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Chapter 1. General introduction

Introduction

The design and analysis of biomolecular networks is an ambitious goal of synthetic
biology and genetic engineering'. Both of which may be able to advance by utilizing formal
methods, such as modeling, developed and relied upon in more mature branches of
engineering. Modeling of cellular processes is the application of mathematics to molecular
biology that ideally provides a computational system that accurately describes the phenotype
of the modeled system in response to changing environments, stimuli, and perturbations.
Modeling allows initial experiments to be performed in silico” through simulation®”, and can
be used to summarize knowledge or discover and fill in knowledge gaps®. Modeling will
have a more significant role, verifying expectations and identifying potentially undesirable
conditions’, as more complicated constructs are considered.

Until recently, models presented in the literature relied on custom-crafted equations to
approximate the actual process underlying an observed behavior of the modeled system.
Regardless of the accuracies of the approximations, this approach creates models that are
hard to validate or extend, stemming from the difficulty that researchers not trained in math-
ematics have understanding and applying the model'’. What has helped modeling to be
accepted as a routine approach in physical sciences and engineering is the identification of
“building blocks” that have consistent properties regardless of their application. Progress has
been made in this direction with the introduction and improvement of biochemical modeling
environments. However, if an analogue to building blocks exists in molecular biology, in
which some research suggests at least topologic building blocks exist'', then the application

of modeling to genetic engineering as a design tool could be made more powerful.

Background and significance

Synthetic biology: Molecular biology currently lacks the structure typical of
engineering; however, several research groups are making progress to develop synthetic

biology™'*"'*. Theoretical approaches suggest that motifs are a common part of all
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networks'>1®

, and with experimental evidence suggesting their presence in biological
networks'', prototype systems are being constructed that demonstrate the analogues of
building blocks in genetic networks. Examples of engineered regulatory networks to date

17-20

include various bi-stable switches'2°, oscillatory systems mimicking circadian clocks®', and

2223 : : 2
“°, as well as more systematic and exhaustive efforts™". Lessons learned

Boolean functions
from these prototypes are helping to establish design principles’ to enable construction of
more elaborate systems. The most ambitious groups are already attempting to engineer
viruses and a complete minimal organism®~.

Not all attention has been placed on engineered networks. Other groups have focused on
the interface mechanisms for communication between cells and engineered and indigenous
networks?’ . Further driving the field is the need to understand and manipulate the regul-
atory control of metabolic networks®’. Resources that are advancing the field include gene

32,33

interaction maps’', protein—protein interaction maps®>>, and large scale protein interact-

ions34—36

surveys across multiple species.

The difficulties of genetic engineering relate not only to the design of networks but also
include the effects of the construct on the viability of the organism. This requires knowledge
of the interactions between other networks in the organism and is presently outside the scope
of current knowledge for all but the most studied organisms. For now, genetic engineers must
remain aware of the possible consequences of incomplete knowledge of the target organism.
Others have taken a network theoretical approach, exploring through simulation the required

properties of a network to exhibit a particular phenotype™>">’

. For the purpose of this
research the networks considered will be restricted to those with associated experimental data

either based on laboratory experiments or generated through simulation.

Synthetic biology — The experiment of Guet: Published network diagrams make the
modeling of regulatory networks look deceptively simple. In practice, most regulation
mechanisms are simply not understood well enough to accurately model an arbitrary
network, a consequence of having limited observations of complex interactions between
arbitrary elements in an incompletely understood network. Guet sought to better understand
regulation by removing several of these unknowns through constructing a library of artificial

gene networks* containing all possible topologies between three of the best-understood



transcription factors. This exhaustive genetic engineering approach provides several new
observations, providing data for new insight into regulation and demonstrating the diversity
of phenotypes possible with just a small number of regulatory elements. Beyond being an
example of successful genetic engineering, the results of this set of experiments provide the

data that form the basis of a validation set for this work.

Modeling formalisms: A modeling formalism is the language in which a network model
is described. It consists of two main components: the presentation and the mechanics'>*.
The formalism’s presentation may consist of raw equations, textual descriptions, or graphical
descriptions. The choice of presentation affects the ease in which a model can be described
and the chance of ambiguities existing in the model. While presentation is limited by the
underlying mechanics, there is no reason that a particular presentation should be any more
constraining than the mechanics.

The formalism’s mechanics concern how a model is actually simulated, such as Boolean,
linear, non-linear, or :agent-based41 methods. The choice of mechanics can limit the
explanatory power of the formalism. For instance, linear methods are easier to analyze and
optimize, but they are limited in their abilities to capture certain dynamics or they violate
physical laws such as mass conservation. Likewise, other methods such as stochastic ones
may be more realistic*>**, but they are prohibitively slow to use in general. However, it must

be considered if such dynamics are required for the particular model. A balance must be

formed between generality, performance, and mathematical convenience.

Modeling environments: The modeling environment is an implementation of a
particular formalism that allows the researcher to capture the essence of how a network is
believed to function. Through simulation and comparison to observations, it is possible to
verify if the model is capturing the observed dynamics.

Modeling packages may be generic or specialized for modeling biochemical networks.
Examples of generic packages that have been used include MATLAB, Mathematica, Mobius,
and Excel®. Since a generic package is not directly designed to accommodate the simulation
of network models, either an awkward interface must be used to describe the network or

considerable custom code must be written, both of which can be error-prone.
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Specialized packages have been released with greater frequency in the past few years to
accommodate the expected needs of systems biology*®*’. One of the original packages,

Gepasi'®*

, is still one of the most popular. Others include E-Cell>® for simulation of entire
cells, Biospice, and Gene Network Analyzer, and COPASI, which is inspired by Gepasi.
Perhaps the most elaborate system is the Systems Biology Workbench (SBW), which con-
sists of a number of tools that operate together, including Jarnac as the computation engine
and JDesigner as the graphical network design tool. Most specialized packages are
standardizing on a common file exchange format called SBML’', which helps to leverage the
complementary features of each package. Although some packages have a rudimentary
model-fitting mode, they are not suitable, in general, for complex networks™".

Through improvement of the theoretical properties of regulatory networks and

sophistication of the modeling environments, future tools may become the molecular biology

analogue to the computer-aided design software packages currently used by engineers.

Model fitting: The process of model fitting is the assignment of kinetic parameters to the
model so that the model is correctly able to predict the response to stimuli of the modeled
system. If an evaluation function is available to measure the fit of the model to experimental
observations, the process can be viewed as an optimization process. Although much research

has been applied to optimization of metabolic networks*™*

, model fitting of regulatory
networks is less refined*>>®. One reason for this dichotomy is because metabolic networks
are composed of largely static chemical reactions, while regulatory networks are more
transitive by their nature. A problem that is constantly faced when analyzing data from
regulatory networks is that the most easily available data, such as expression chips, can be
misleading®"*.

The choice of formalism has an effect on the ease of model fitting. A nonlinear
formalism, such as one based on differential equations, will naturally be more difficult to
optimize than one based on linear approximation such as s-systems. But ease of optimization

alone is not enough to force a selection of modeling formalism.

Evolution of regulatory networks: Evolution produces apparently complex systems

from supposedly random mutations guided by selection pressure. Computer scientists,
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inspired by evolution, created the field of evolutionary computation that uses the same
principles thought to be at work in evolution. Nature has been very successful, more than
engineers, in constructing robust systems in noisy environments through evolution. It is
therefore only natural to apply the concepts of evolutionary computation to the problem of
regulatory network modeling.

Evolution of regulatory networks differs from model fitting primarily in the degrees of
freedom available. Model fitting primarily considers alterations of the model parameters
alone with no impact on the model topology. In the evolutionary approach, the topology of
the network is able to change as well as the parameters. Akin to network reverse

engineering”® in its goal, evolutionary methods do not rely on statistical inference.

Dissertation organization and accomplishments

This dissertation is divided into eight chapters representing progressive steps toward the
goal of evolving models of biochemical networks that exhibit a phenotype of interest. The
current chapter serves as introduction to the area of biochemical network modeling, with a
brief literature review, and with in-depth review of relevant literature reserved to subsequent
chapters.

Chapter 2 introduces the basis of the modeling formalism that will be used throughout
this dissertation. This chapter was originally an invited paper*’ for PNPM 2003 (the 10th
International Workshop on Petri Nets and Performance Models) held at the University of
Illinois at Urbana-Champaign. The workshop audience included applied mathematicians and
computer scientists specializing in modeling the performance of computer networks and
architectures.

Having defined the mathematic formalism that will be used for our models, in Chapter 3
we develop a user-friendly modeling environment that serves as the environment in which
our models are built, evaluated, and compared. We pursued this development instead of using
available packages in order to maintain tight control over the environment, to ensure
extensibility for our research, and to learn the details of the involved methods through
implementation. Alternatives are either restricted to binary-only distributions, are based on

unfamiliar languages, have unreasonable license agreements, or have inadequate
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performance. This software, referred to as PNE, has been released into the public domain
under the GNU General Public License for anyone to use and modify.

Chapter 4 was originally published in the 2005 proceedings of the Pacific Symposium on
Biocomputing and introduced a method of finding solutions to the equations of our models.
Subsequently we present better methods, but Chapter 4 represents an important step.

Chapter 5 consists of a paper originally published in Genetics®' in which our modeling
environment is used to develop a model of the yeast galactose pathway. We subject this
pathway to genetic selection similar to methods used in breeding simulations, enabling us to
observe the dynamics of populations under selection. This is the first chapter in which we
actually see the simulation of a real biochemical network.

In Chapter 6 a model-fitting environment is presented that attempts to fit a model to a set
of experimental data by exploring values of free parameters that may include kinetic rates as
well as the model topology. Ideally, measured values for all kinetic parameters would be
available, but such availability is rare. Still rarer is complete understanding of the topology.
A hybrid search strategy comprising a stochastic optimization method (genetic algorithm)
and a local optimization method (simplex) is successfully used despite the presence of
nonlinear dynamics. If given sufficient freedom, the system can be used to evolve new
models as is demonstrated by identifying alternative genetic toggle-switch models. There is
also discussion of how one can quickly estimate network similarity using graph theoretical
algorithms to identify unique networks from the solution sets.

Chapter 7 presents the Guet network library. We first model these networks in PNE using
our understanding of the regulatory elements involved. Then we apply the tool developed in
Chapter 6 to these networks to try to find valid parameters. If building blocks can be
identified that have consistent parameters in different networks, then it should be possible to
construct, using these building blocks, models of new, yet unconsidered, regulatory
networks. If such independence does not exist, it would suggest a nontrivial interaction
within or between the regulatory motifs that is not currently part of the theory of regulation.

Finally, in the last chapter, Chapter 8, we conclude the main part of the dissertation by
considering the preceding chapters retrospectively, summarizing what has been accomplished

and suggesting directions of research that would advance this field.
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Following the conclusions are two appendices. In Appendix A is an example of how the
modeling environment that we have created can be applied to other domains. PNE is
modified to target Petri Networks and several examples are described. There is considerable
work supporting Petri Network theory and they have been applied to modeling regulatory
networks.

Appendix B contains optimized models each of the Guet networks. Some match the
experimental data while others do not. In some cases, comments have been added describing

unusual properties of the particular network.
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Chapter 2. Modeling networks of molecular interactions

in the living cell

A modified version of an invited article published in The Proceedings of the 10th
International Workshop on Petri Nets and Performance Models (PNPM 2003), University of
Illinois, Urbana, Illinois, USA, September 2-5, 2003

Kent A. Vander Velden' and Jean Peccoud’
"Pioneer Hi-Bred International, Inc., DuPont Agriculture & Nutrition, 7200 NW 62nd
Avenue, Johnston, IA 50131, USA

Abstract

Interactions occurring in living cells between populations of macromolecules are now
sufficiently understood to model them with some level of realism. Here, the structures and
dynamics of these models are reviewed, and a number of open problems are discussed.
Recent applications of such models indicate that there is a growing need for simulation

environments specifically designed for the life sciences.

Introduction
Fifty years ago, biology became molecular with the publication of the crystallographic

structure of the DNA molecule '. Since then, life scientists geared their efforts and resources
to the characterization of the molecules involved in the biochemical processes supporting
every aspects of the physiology of all sorts of living organisms spanning a wide range of
organizational complexity. The molecular mechanisms of life turned out to be very similar in
viruses, bacteria, plants, and animals, making their systematic dissection a very appealing
proposition.

If the project is still far from completion, it is already possible to get a global perspective
on the network of chemical reactions taking place in a number of model organisms. The

recent development of databases with the ambition to record systematically and consistently
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all the reactions described in these organisms is probably the best indicator of the
advancement of this scientific project **. Some of these databases are publicly available on
the Internet, making it easy for a large and diverse community of scientists to access these
data and keep abreast of their developments.

Networks of molecular interactions will be referred to as “molecular networks” in this
document. They form the communication and control systems of living cells. Starting with
individual networks that control fine grain components of the cell, such as uptake and
conversion of molecules, exchanges between networks control more visible responses.
Interactions of genes and proteins, through a variety of regulation mechanisms, comprise
molecular networks and are the mechanisms for responses made to environmental signals and
perturbations. Our research into the arena of molecular networks has touched on several areas
necessary for realistic modeling, simulation, and analysis. Here we briefly present an

overview of this research and the computational challenges it raises.

Structure

Biologists often support textual descriptions of interactions between molecules with
pieces of artwork intended to illustrate the main features of the system dynamics.
Unfortunately, the representation of molecular networks has not been standardized, making
most figures found in the biological literature ambiguous and thus unsuitable for
implementation in software. However, chemists have been using standard notations that can

be adapted to meet the specific requirements of the life sciences.

Chemical equations

Molecular networks can be represented in a unambiguous way as sets of coupled
chemical reactions using chemical equations.

In Equation (2.1) for instance, the first line represents the inactivation of the gene gal4g
by glucose noted Glu. The second reaction represents the expression of the gene, i.e. the
production of one protein molecule by the DNA molecule coding for this protein. The last

reaction represents the spontaneous degradation of the protein.
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galdg + Glu ::<:>' galdgX
galdg —5 galdg + Galdp (2.1)
Galdp—> &

This type of notation naturally leads to a matrix representation of molecular networks.

The general form of a chemical equation is:

M M
>t Xn— Y B X (r=12,...R) (2.2)
m=1 m=1

Equation (2.2) is completely determined by the two MxR matrices « and £ called the
reactant and product matrices respectively, and a vector X representing each of the M
molecule species in the system. Data structures used to manipulate molecular networks in
software are usually derived from these two matrices. The difference f—« is often referred to
as the stoichiometric matrix.

There is a significant specificity in the way these equations are used in the context of
biological molecular networks. Classically in chemistry, chemical equations need to preserve
the mass and numbers of atoms. This constraint is known as the law of atomic balance. In
biology, accounting for all atoms present in the system is not possible due to the size of the
molecules involved. Chemical equations are thus used as a meta-language. Reactions
expressing creation or removal of molecules from the system are permitted and necessary.

Molecular networks define atom-free stoichiometries °.

Diagrammatic representation

Vol’pert diagrams are graphical representations of sets of chemical equations (Figure
2.1). They offer a global perspective on the model that helps to understand the architecture of
the network. It is often much easier to build a model of medium-sized systems using these
diagrams.

Vol’pert diagrams are flat representations of molecular networks. This becomes limiting
when the number of reactions in a network exceeds 100 or so. Beyond this limit, it becomes
necessary to refine the graphical representation of the networks. Two approaches have been

explored to address this problem:



15

e Hierarchies of diagrams can be defined so that a complex model can be broken
down into several manageable sub-networks.
¢ A number of reaction mechanisms that are found in virtually all molecular
networks have been characterized. They include mechanisms of enzyme-
catalyzed reactions, mechanisms of gene activation or gene repression, etc. It is
possible to simplify the diagrammatic representation of molecular networks by
introducing new graphical objects corresponding to these canonic mechanisms.
It is naturally possible to combine both solutions. A more difficult problem is the
problem raised by the high dimensions of the state-spaces generated by certain molecules.
Many genes have multiple binding sites for proteins regulating their expression. Some
proteins have several modification sites to which a phosphate group can be attached. For
instance the tumor suppressor protein p53 has at least 12 different modification sites. It can
thus exist in 2'? different states. Finding a way of representing all these state variables in a

concise way remains an open problem.

GalEat ~[R1] /—F ~[R3]
F
R2

- Gall-25-7-10p =
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Figure 2.1. Vol'pert diagram of a molecular network
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Dynamics

The analysis of the dynamics of chemical systems usually relies on differential equations.
In the case of biological systems where the number of interacting molecules is small, it is
more realistic to use stochastic models of molecular interactions. However, the
computational cost of solving these models when their state space is large makes it necessary

to develop approximation solutions.

Differential equations

The mass action rate law is commonly used to describe the kinetics of chemical reactions.
The law states that the rate of a reaction is proportional to the concentration of its reactants.
The generic form of a reaction rate is provided in Equation (2.3).

M
vV, = krl_‘l[[xi | (2.3)
i

The rate vof reaction r is the product of its reactant concentrations. If two molecules of
the same type interact in a reaction, their concentration should appear twice. It is very
convenient to use the reactant matrix as exponents to express these rates in a generic way.
Last, the reaction rate depends on reaction specific kinetic rate constant. It is worth noting

M
that the dimension of this constant depends on the order of the reaction, i.e. Zai’r .
=)

From there it is possible to derive a set of ordinary differential equations (ODEs)
describing the time-evolution of all the state variables. The net time evolution of a molecule
concentration is the difference between the rates of all the reactions producing this molecule
and the rates of all the reactions consuming the molecule. Since a single reaction event can
consume or produce more than one copy of a molecule, the rates need to be adjusted by the
stoichiometric coefficients.

% = Z‘ BV, — Zozi’rvr
(2.4)

= zyi,rvr
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ODEs provide a reasonable approximation of the dynamics of populations of molecules

at the thermodynamic limit when the sizes of all populations of molecules are large.

Stochastic process

When modeling at the level of gene regulation, where genes are typically in single copy
numbers, ODE solutions may represent a very poor approximation of the system dynamics.
This observation was formulated in the early 1940s. Max Delbruck probably was the first
author to address this question from a mathematical perspective °. Soon afterwards, Erwin
Schrodinger commented on the expected fluctuations of the interactions between small
populations of macromolecules confined to the small volume of the living cell 7.

This problem has been addressed from a theoretical perspective by physicists and
chemists during the two following decades *''. Their results specified the Markov process
equivalent to the system of ODE:s traditionally used in chemical kinetics. The intensity of the
process is sum of the marginal intensities of the reactions. The marginal intensity of a
reaction is the stochastic equivalent of the deterministic reaction rate. It specifies the average
number of occurrences of a reaction by unit of time. Its structure is comparable to the
deterministic reaction rate with a few modifications. As mentioned earlier, the dimension of
the deterministic rate constant depends on the order of the reaction. Since the stochastic
intensity is based on actual molecule numbers and not molecule concentrations, it is
necessary to remove the volume from the kinetic constant. The modification of second term
has to do with the probability of two molecules to interact. In any reaction where one
molecule of each population interacts with molecules of another population, the term is
analogous to the expression of the reaction rates corrected for the volume. If two molecules
of the same population interact, then it is slightly different. A great deal of attention was
brought to justify these terms in the early articles on stochastic models of the chemical

reaction.

el " 2.5)
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The dynamics can be represented by a pure jump process defined by two random
variables. The instant of the next jump is exponentially distributed. The next reaction,
destination of the next jump, is also randomly distributed. The probability of each reaction
depends on the weight of its intensity relative to the sum of the intensities of all reactions.

P, (r>s)=¢ "
A (X) (2.6)
A(Xeo)

Donald Gillespie derived from the mathematical definition of the process, a computer

P(Xt:r = Xt:o+7r):

algorithm to perform exact simulations of this process 1213 " A more effective version of this
algorithm has been published recently '*. These methods give excellent results when the
mean time between jumps does not tend to infinitesimal values. When the system becomes
stiff because the rate constant of one reaction is several orders of magnitude larger than the
rate of the slowest reaction or because one population of molecules is several orders of
magnitude larger than the smallest population, the computing cost of this approach becomes
prohibitively expensive. This limitation is currently driving a very active field of research

aiming at finding fast and dependable approximations of this stochastic dynamics.

Approximations
It may seem natural that the stable steady-states of the ODE be associated with the modes

of the stationary distribution of the corresponding stochastic process. However, in general
there is no one-to-one correspondence between equilibrium points and extrema of stationary
distributions °. Similarly, the mean values of the variables of the stochastic process do not
match the trajectories of the ODEs '° even though the differences may be negligible. Hence a
practical, but not very rigorous, approach is to use ODEs while building a model and switch
to stochastic simulation after the dynamics appear correct. This allows one to focus on
building a network initially and then explore the effects of stochastic noise later.

To address the need for stochastic simulation, but also the conflicting need for simulation
speed, stochastic approximation methods are being developed. In particular, it has been
demonstrated that under some conditions, the number of jumps occurring during a small time

step can be approximated by a Poisson distribution '°.
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Another approach would be to develop a hybrid model by partitioning the state-space into
three categories of variables whose dynamics would be represented by a pure jump process, a
diffusion process, and differential equations. This would lead to a generalized Markov
process as it is defined by Gardiner '”. This approach would require some a priori knowledge
of the size of the populations of molecules corresponding to each dimension of the state
space. Since this information is usually not available before the model is simulated, it is
necessary to start by assuming that all variables jump between discrete values and find a way
of approximating the time-evolution of each variable as we go. It is likely that different types

of problems will require different types of approximations.

Software
Upon starting this project, a survey of the software tools available was conducted.
Several applications have been developed to help biologists analyze the emerging properties

1819 or Scamp/Jarnac® rely on a textual

of molecular networks. Some applications like Gepasi
specification of the models close to the notation used in chemical equations. This approach
quickly becomes impractical when the number of reactions grows beyond 20 to 30 reactions.

A diagrammatic representation of the networks makes it much easier to capture the logic
of larger networks. This observation was the rationale for the development of JDesigner, an
add-on for Jarnac providing a network view of the models. Similarly, Pedro Mendes, who
developed and maintains Gepasi, is currently working on the development of Copasi, which
will also include a diagrammatic representation of the models.

The correspondence between molecular networks and stochastic Petri nets has been
established *'. This made it possible to use software originally designed to analyze the
performability of computer architectures such as UltraSAN or Mobius %%, to solve the
stochastic dynamics of molecular networks.

Simulation solutions are also already available from various vendors and more are
expected in a near future. For instance, Princeton (NJ) based Physiome Sciences, Inc sells a
software package named PathwayPrism™ with features somewhat similar to the Jarnac and

JDesigner combination. A few prominent companies operating in the technical and scientific

computing market are also working on the development of similar simulation platforms.



20

While several systems were available, none met all of our needs in terms of user
interface, representations of models, and capability to switch between differential, stochastic,
and hybrid dynamics. This lack of desired flexibility resulted in the decision to develop in
house our proprietary modeling environment.

In this environment molecular networks are constructed using a graphical language and
internally converted to a series of chemical reactions based on mass action reactions. Most
simulation packages in the life sciences implement various types of rate laws commonly
found in biological systems **. These specialized kinetics are approximations of the kinetics
of common reaction mechanisms. They can thus to be modeled by the mass action rate law
without the need for introducing specialized rate laws. This approach is entails a small
computation penalty but is safer since it does not rely on any assumption ensuring the
validity of the approximation. It also provides the freedom to explore alternative simulation

and analysis techniques.

Applications

Building models of molecular networks is a way to distinguish aspects of a biological
system that are well documented from those that need to be hypothesized. In some cases, the
properties of models can be used to evaluate the biological realisms of the assumptions upon
which the model was built. Recently, genetic constructs exhibiting complex dynamics have

been engineered based on a prior analysis of molecular networks models.

Knowledge capture

While the ultimate goal of molecular network modeling might be a means to understand
the dynamics of the network, there are intermediate rewards. Identification of weaknesses in
one’s understanding of the network is one such reward. Questions are raised as soon as one
starts to build a model, and become more complicated as one begins to fill in all the
parameters needed for simulation. Frequently, the modeler needs to research or hypothesize
stoichiometric coefficients, reaction and degradation rates, cooperative binding, formation of
complexes etc. Modeling molecular networks is a way to capture the knowledge of biologists

and to formulate working hypotheses.
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Discovery

The modeling of molecular networks starts with the identification and placing into the
modeling environment interactions between genes, proteins, and possible environmental
factors. During the process of network construction, rate constants must be identified for
each reaction. The rate constants describe the relative speed of each reaction and are equally
important for simulation as the interactions. While interactions are often accessible from the
literature, rate constants are rarely documented and are generally inaccessible through
experiment. Fortunately, robustness seems to be a very common property of biological
networks. Several networks are pretty insensitive to parameter values >**’. This property
tends to be used as a criterion to assess the biological realism of a model. A model exhibiting
a strong robustness indicates that the assumptions used to build it are to be favored. This
indication can lead to the design of experiments aiming at the verification of these underlying
hypotheses.

Stochastic modeling of molecular networks recently drove a series of experiments aiming
at the experimental observation of molecular noise at the single cell level **>°. Our
understanding of molecular interactions, in light of these living cells, is being revisited in the
light shed by these new developments. Control mechanisms seem to be able to leverage

31,32

molecular noise , and therefore the stability of molecular clocks to molecular noise is

being investigated *. Cellular differentiation is analyzed as a first-exit problem ***°,

Engineering

Models of molecular networks have driven the design of new genetic constructs
exhibiting complex dynamics. In 2000, Elowitz designed the Repressilator, a construct
consisting of three genes repressing each other and leading to the oscillating expression of a
fluorescent protein *°. The same year, Gardner designed a bi-stable construct called a toggle
switch by combining two genes repressing each other *’. Since then, a number of other
constructs have been described (see **° for recent reviews).

Even if practical applications of this new generation of constructs remain to be identified,
they can already be regarded as a turning point in the history of biology. They clearly

demonstrate that we already know enough about interactions between molecules in the living
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cell to model them with some level of realism. The minimal artificial networks that have
been engineered so far can be compared to simple electrical circuits consisting of a few
resistors, capacitors, and transistors, but it is likely that much more complicated constructs

will be engineered in a near future.

Conclusion

This analogy between molecular networks and electrical circuits leads a number of
scientists to believe that there will soon be a need for CAD applications to design genetic
constructs. This trend is probably best illustrated by the University of California, Berkeley,
which hosted the development of the SPICE circuit simulator and is now supporting the
development of the BioSPICE project. This field of research is rich in opportunities for
modelers, computer scientists, software engineers, and electrical engineers wishing to ride

wave of a systems approach of molecular biology.
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Abstract

Motivation: The model-driven design of artificial gene networks requires a computa-
tional environment that adapts to this emerging domain concepts and methods used in other
fields of engineering. Traditional gene network simulation software applications do not
enable a hierarchical definition of models, the reuse of previously defined models in larger
models, or the definition of generic performance metrics.

Results: GenoDYN provides an environment for analyzing artificial gene networks.
GenoDYN supports the construction of network models using intuitive graphical
representations of molecules, reactions, and network motifs, with additional controls for
modeling external inputs. GenoDYN also supports analysis of the dynamics of the network
model using continuous or stochastic simulation and built-in visualization tools such as line
and phase plane plots, or time series of statistical distributions. GenoDYN includes a
distributed computing framework for computationally demanding stochastic simulations.
GenoDYN also provides built-in performance evaluation functions as well as user-specified

evaluation functions written in a built-in scripting language.
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Introduction

Model-driven design of artificial synthetic genetic systems meeting user-defined
specifications is the ultimate vision of synthetic biology . The development of the first
artificial gene networks relied on a qualitative analysis of the dynamics of small systems of
differential equations '°'2, but this method does not scale up beyond these few proof-of-
concept results. Numerical simulations coupled with the automatic exploration of the design
space ''7 seems to be an interesting alternative to identifying robust designs capable of
exhibiting desirable phenotypes, but this promising approach has been explored with
software prototypes that lack mature modeling capabilities.

A modeling platform, used in engineering projects, should support the development of an
abstraction hierarchy allowing users to analyze model properties at different levels of

19,20
U In

organization '® by taking advantage of the modularity of artificial genetic systems
addition, the modeling framework should be capable of expressing the artificial genetic
system inputs as interactions with their physical or biological environment *'. Being able to
define arbitrary functions of the models’ states to express the design performance is essential
to evaluate designs. In addition to streamlining the modeling definition process, the modeling
platform should be integrated with tools to explore the design space by optimizing parameter
values or even the model structure. GenoDYN was developed with these requirements in
mind. It supports a hierarchical definition of models that encourages reuse of previously
defined models. It supports multiple simulation engines that are well integrated with
sophisticated visualization capabilities to enable fast model development iterations. In
situations where the computing cost of simulations exceeds the capability of the workstations
used to run the client applications, users have the possibility to seamlessly execute their
simulations on a dedicated cluster. Evaluating model performance is possible by using built-
in generic functions or model-specific functions developed in a custom scripting system.
Finally, the GenoDYN platform includes higher level applications that can be used for
exploration of the design space.

GenoDYN joins a growing list of software environments used in systems biology for

22-25

modeling biological networks . Inevitably, some of the capabilities of GenoDYN overlap
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those of others. A recent review of available packages *® can help prospective users identify
the software solution most suitable for a particular research project.

This report focuses on GenoDYN’s most specific features. Its organization reflects the
modeling workflow by first describing model editing functions. Model simulation and
evaluation are described in the following sections. Model evolution tools are briefly covered
before discussing some of the limitations of this platform and its possible future

developments.

Model definition

Basic editing

GenoDYN presents a canvas view for modeling biochemical networks. Directed edges
between molecules and reactions model product and reactant relationships. Context-sensitive
menus provide a palette of network entities such as a molecules and reactions. Different
categories of molecules are available (e.g. DNA, RNA, proteins, metabolites, complexes) but
the difference between them is limited to their graphical representation. Numerically all
molecules are equivalent. Similarly, GenoDYN reactions are restricted to only mass-action
kinetics. This choice simplifies the design of the simulation engine and makes the model
interactions explicit and valid in all conditions, unlike specialized reaction kinetics that are
valid only under certain assumptions *'.

Sections of a model can be selected, cut, and pasted. Because model entities must have
unique names, when a new model section is introduced by a paste operation, molecule and
reaction names of the new section in conflict with existing names will be suffixed with a
random four-letter string.

The Ed it menu includes additional features that help refine the visual representation of
GenoDYN models such as randomized placement, snap to grid, and dynamic layout based on
a ball-spring physics simulation.

Multiple concurrent canvases allow one to work on multiple models simultaneously and
copy and paste sections between models. Models are stored as XML documents that can be

converted to SBML ** using a transformation language such as XSLT.
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Environment specification

When modeling a biological system, it is often desirable to evaluate how it reacts to
variations of the physical environment. Examples of such variations are circadian oscillations
of light, temperature, nutrient availability, and changes of the growth medium such as the
addition of gene expression inducers. The physical environment can be represented by
variables that affect the dynamics of the model but are not affected themselves by the time
evolution of the model’s variables. In GenoDYN, control variables are model entities that
can impose a boundary condition on the model dynamics.

Two different types of control variables are available: square wave and interpolated.
Square wave control variables have six parameters, making it possible to represent various
transitions between two different states including periodic oscillations and impulse functions.
Despite the flexibility of the square wave control variables, in some cases it is necessary to
introduce control variables with a very specific dynamics. This would be the case when
analyzing the network response to a set of experimental perturbations recorded in a reactor.
In these cases it is possible to introduce in the model an interpolated control variable whose
dynamics will be specified by importing a text file containing time series values.

GenoDYN calls “environment” a set of parameterizations of the model control variables.
After the number of environments defined on the model has been specified in the
Simulation>Environment>Edit menu, the dynamics of each control variable can
be specified by successively selecting each environment in the drop list of the control

variable definition dialogue.

Hierarchical modeling
GenoDYN supports a hierarchical approach to the definition of complex models by

allowing the reuse of existing models as sub-networks of more complex models. Any
molecule of a model can be exported by checking the corresponding box in the molecule
definition dialogue. This exposes the molecule in the sub-network object, allowing it to be
connected to other entities in the calling model (Figure 3.1). Subnetworks can be edited or
defined directly into the larger models. Alternatively, a subnetwork can be imported directly

from an existing model file. Modifications of the original subnetwork file are not propagated
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to the models using that file as subnetworks. This feature enables a structured approach to
model development. Complex models can be broken down into more manageable
components that can be analyzed individually before integration in larger models. The
structure of large models becomes more apparent as the entire model can be represented by

various subnetworks corresponding to pathways or components of the global network.

A

Figure 3.1. Hierarchical model using subnetworks. The model A contains two references to the sub-
model B. Model A includes two parallel pathways from S to P2 and from S’ to P2’. Each pathway is
composed of two Michaelis-Menten mechanisms. In the S to P2 pathway, all the molecular steps are
visible whereas the use of the two subnetworks SN1 and SN2 makes it possible to represent the same
molecular network in a more abstract and compact format in the S’ to P2’ pathway. The three variables
E, S, and P of model B accessible to models at the next level in hierarchy are indicated by a thick black

contour.

In addition, it is possible to build a library of subnetworks corresponding to common
molecular mechanisms or network motifs. Models in a common shared directory can be

directly inserted into a model using the library item of the context-sensitive menu.

Reporting
Models can be documented and exported using different methods. The model diagram

can be copied and pasted into other applications (Ed1t>Copy to clipboard).

Similarly, the diagram can be saved in SVG and PNG files. A comprehensive report can be
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generated and saved in a text file (Pathway>View Report). The model can be exported

in different formats to be analyzed in other tools.

Simulation

ODE and stochastic simulation

Chemical kinetics has traditionally relied on Ordinary Differential Equations (ODEs) to
describe the time evolution of molecule concentrations »°. However, concentrations are the
limit of the mean number of molecules per unit of volume when this number tends to infinity.
When a model includes small populations of molecules, its dynamics is better described by a

. . . . 1
Markovian jump process with a discrete state space >

. This situation is frequently
encountered in the modeling of gene regulatory networks where only a few copies of
molecules like genes, mRNA, or even some transcription factors are present in living cells.

Hence, GenoDYN provides two modes for simulation: continuous, using CVODE ** to
solve ordinary differential equations (ODEs), and stochastic, using Gillespie’s direct method
33 Users can switch between the representations that are mathematically equivalent **. A
typical modeling workflow starts by simulating the ODEs as a means to quickly view the
system dynamics. The Simulation>0ptions dialogue box allows users to specify the
simulation time frame and the sampling period used to collect data for visualization. The
ODE solvers options allow users to let the solver find the steady state of the model and set
integration parameters that can be used to fine tune the numerical integration.

In models with large numbers of molecules such as metabolic pathways, it may not be
necessary to use another solver. However, for models involving small populations of
molecules such as models including gene expression mechanisms, the model analysis will
involve running the stochastic simulator. Stochastic simulation is valid for any number of
molecules, but its computation time grows rapidly with the number of molecules and the rate
of the fastest reactions. The parameters of the stochastic simulator are limited to the number
of trajectories simulated and the update rate of the simulation visualization. For stiff systems
having reactions occurring at very different rates, stochastic simulations may require

significant computation time *>>’. Simulations can always be aborted by pressing the Esc

key.
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Visualization

Simulation results are collected by sampling the concentration of each molecule at
regular intervals. The sampling period affects the memory GenoDYN requires by controlling
the number of data points recorded during the simulation. Oversampling simulations could

result in a decrease of performance or excess memory consumption.
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Figure 3.2. Visualization of the solution of an ODE model of a molecular network of the
Repressilator. GenoDYN can either plot (A) the time evolution of individual variables or (B) the phase

portrait representing the evolution of a variable as a function of another state variable.

For continuous simulations and stochastic simulations of individual trajectories, users can
display the results as plots of concentration versus time, or as plots of one variable versus
another in the phase plane view (Figure 3.2). Right clicking on any of the plots reveals a
menu that allows users many options to customize the trajectory visualization.

Results from stochastic simulations consisting of ensembles of multiple trajectories are
summarized using a series of concentration distributions over time (Figure 3.3). The resulting
concentration distributions are represented as colored intensity plots representing the
distribution histogram at each sampling time (Figure 3.3). The number of bins used to make

the histograms can be manually set. In addition, it is possible to independently toggle the
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display of the distribution and its mean. These plots provide an avenue to quickly visualize
the noise and stability of a network.
Finally, data from the plots can be exported to a text file for further analysis in a different

environment.

canceriration

0o 1 £ o S

Figure 3.3. Visualization of the dynamics of stochastic models. (A) represents a single trajectory of
the Repressilator by superimposing on a single plot the evolution of the number of proteins coded by the
three genes in the network. Plot (B) represents the evolution of the statistical distribution of one of the
protein levels estimated from the simulation of 1,000 trajectories. The solid line represents the mean
value of these distributions. Because these trajectories are not synchronized, the distributions do not

oscillate even though individual trajectories do.

Distributed simulation

Stochastic models give a more comprehensive insight into the dynamics of a molecular
network but this benefit comes at a significant computational cost, since estimating the
dynamics of the state variable statistical distributions requires the simulation of numerous
trajectories. This can rapidly lead to significant computation times. Because of the trajectory
independence of the Gillespie algorithm, it is possible to achieve a linear speedup by
distributing the simulations over multiple processors.

Many computational biologists who could benefit from using a distributed computing
environment for stochastic modeling of molecular networks do not have easy access to a
computer cluster or do not have the skills to work in such environment. To eliminate this

barrier to entry into distributed computing, GenoDYN running on a personal computer can be
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used as a front-end to a cluster or a grid. In the simulation options dialogue, one can specify
the IP address of a remote computer where a calculation server runs in task supervisor mode.
This calculation server receives the specification of a simulation, essentially a serialized form
of the model file, from clients running on user desktops. Once set up, GenoDYN running on
one’s desktop computer sends a model to a centralized task supervisor, which in turn passes
the model to idle calculation workers. The calculation supervisor collects results from the
workers and returns them to the corresponding GenoDYN client. Multiple GenoDYN
instances can be connected to a given calculation supervisor at once, with a dynamic pool of
calculation workers residing within a cluster or an ad hoc distributed computing environment

such as a pool of workstations (Figure 3.4).

— Model, Paramet
(*— Resulls

| =1

Worker 1 -
Worker 2 i)
oz Worker k

Figure 3.4. Distributed computing architecture

The calculation supervisor and the calculation worker use the same binary, which is
independent of the GenoDYN client. The invocation of this binary determines which mode is
used. The workers must be given the IP address of the supervisor and the GenoDYN client
must be given the IP address of the supervisor. The supervisor does not need to be informed
a priori of clients or workers. Both clients and workers are free to come and go and their IP
addresses are discovered upon initial connection with the supervisor. As long as there is at
least one worker, progress will always be made. One potential deployment strategy is to run
workers with low priority on many desktop computers in a department or on a cluster. When

there are available resources they can be utilized by those running GenoDYN. The supervisor
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and workers require no local access other than to write to an optional log, and can run
without local permissions, thus improving security. Currently the supervisor and worker are
only available on Linux, but this does not restrict the architecture of the GenoDYN client.
Windows-based GenoDYN clients can connect to Linux-based supervisors.

To illustrate the potential benefit of this architecture we have dedicated a small cluster to
GenoDYN. Any GenoDYN user can use the software remote simulation feature by pointing
its client toward xnodel.vbi.vt.edu in the Remote CPU option of the
Simulation>0ptions menu. This feature does not require a login account or any other
special privileges. Note, however, that this experimental resource is currently limited to a

small number of nodes and would not be able to support large simulation projects.

Model evaluation

Fitness function

GenoDYN supports the definition of fitness functions which are performance variables
defined to evaluate a model. Two evaluation functions are built into GenoDYN: generic and
scripted. The generic fitness function allows the definition of target values for any number of
variables and different environments. The target values are entered using the
Optimization>Fitness function>0ptions dialog box. Selecting the Generic
fitness function activates the Generic Fitness Function Parameters table. A variable is first
selected along with the target values for each environment defined for the model.

The fitness value of the generic fitness function is computed as the Euclidean distance
between the target and simulated values of the selected variables at the last time point of the
simulation and in each environment. The fitness value is shown in the status bar below the
model canvas. The generic fitness function is a convenient way of testing the match of a
model and a set of experimental measurements or desired behavior.

A more generic way of defining a performance function is to use a built-in scripting
language to define arbitrary functions. The grammar of the scripting language has its basis in
the C language with some extensions for conveniently accessing the model (Table 3.1).
Within the scripting language one can change the rate constants, invoke simulations, and

examine results. Essentially, the only part of the model that is not accessible from within the
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scripting language is the model topology. While the previously described fitness function
could be implemented within this scripting language (Table 3.2), the dialog box may be more

convenient for first time users.

Global variables holding fitness values (R/W): fitness objective
Initial concentrations (R/W): initial

Rate constant (R/W): kc

Simulation results (RO): result

Simulation invocation: simulate

1/0: print

Math functions:

abs acos asin atan cos sin tan

exp log sqgrt sqgr

Variable types:
float string int boolean void

Constants: true false

Control structures:
break case continue default do
else for if return switch while

Comments: /*...*x/ //
Operators: + - * /
A

&&
<= >= |

Table 3.1. Scripting language reserved keywords

When performing stochastic simulations fitness functions are currently applied to the first
trajectory. In the future we plan to extend GenoDYN to allow the fitness functions to

examine individual trajectories and statistical summaries of the ensemble of trajectories.

Optimization of model parameters

Once a performance or fitness function is defined, it is possible to examine the sensitivity
of the network’s performance to network parameters or to optimize the network parameters
so as to maximize its performance (relative to the specified evaluation function). The built-in
sensitivity analysis module of GenoDYN displays the values of the evaluation function as

one or two parameters are varied over a range (Figure 3.5). Alternatively, network models




37

constructed in GenoDYN can be exported to independent optimization packages. The authors
have exported models to MATLAB, Mathematica, and Globsol 38:39 a5 well as to C code
referencing CVODE.

void main () {
int 1 = 0;
float res[5];

float target[5];

target[0] = .5; target[l] = .5;
target[2] = .5; target[3] = .5;
target[4] = .5;

for (i=1; i<=5; 1i++) {

kc("Rxn 1") = 1/5.0;

simulate () ;

res[i-1] = result("Mol 1", 100);
}

fitness = 0;
for (i=1; i<=n; 1i++) {
fitness = fitness + sqgr(target[i-1] - res[i-11);

}

fitness = sqgrt(fitness);

Table 3.2. Example of fitness function script

External to GenoDYN is an implementation of the hybrid genetic simplex algorithm
(HGA), which allows specification of constraints on the allowed range of values for each
parameter, or constraints that tie several model parameters to a single optimized parameter,
thereby reducing the number of parameters to optimize. The HGA also extends the
evaluation function to return both quantitative and qualitative scores, allowing one to identify
networks that have the desired qualitative dynamics, but exhibit a poor fit with experimental
data in quantitative terms and vice versa. As with all optimization routines, care must be
taken to design an evaluation function that reflects the goals of optimization and helps direct

the search for an optimal solution.

Examples

GenoDYN comes with an extensive library of examples that includes various models of
the toggle switch '°, the Repressilator ', and Guet’s plasmid library **. We previously

described an extensive analysis of the genetic properties of a model of the galactose switch
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pathway *' which is in displayed in the screen shots of in Figure 3.6. The genetic analysis of
this model illustrates well the flexibility of the GenoDYN modeling framework that allowed
us to benefit from a sophisticated graphical user interface to develop the model. After the
model had been defined, GenoDYN was integrated into an optimization environment

specifically designed to conduct the genetic analysis described in this article.
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Seale: [40 Update Rate: 10
[ J
[ Close Il Start |

Figure 3.5. Two-parameter sensitivity analysis

Conclusions
GenoDYN has been strongly inspired by our experience of using UltraSAN and later
Mobius, two sophisticated modeling environments developed in the computer science

community to analyze the performance of computer architectures **

. The notion of fitness
function is a biological translation of the reward functions used in performance analysis.
Similarly, the powerful hierarchical models used by Md&bius led us to define functionally

comparable model composition operators in GenoDYN.
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Figure 3.6. The main interface, along with the simulation results and report dialogs.

When analyzing the properties of artificial gene networks, the possibility of defining
control variables and different physical environments greatly facilitates the evaluation of the
network reaction to environmental inputs. We have also dedicated significant efforts to the
implementation of advanced visualization functions that speed up the modeling cycle by
allowing users to quickly understand the dynamics of the model they are building.

GenoDYN’s distributed computing architecture may be one of its most innovative
features. Its implementation is very portable and does not depend on specific middleware.

Users are now one click away from a high performance computing environment allowing
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them to better analyze the stochastic dynamics of artificial gene networks. We are currently
working to make GenoDYN available on the TeraGrid **. GenoDYN also provides a C++

framework for designing custom applications, many examples of which are included along
with the GenoDYN source code. GenoDYN is therefore well positioned to be integrated in

the design automation solution currently being developed for synthetic biology *.
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Abstract

Mathematical models of networks of molecular interactions controlling the expression of
traits could theoretically be used as genotype to phenotype (GP) maps. Such maps are
nonlinear functions of the environment and the genotype. It is possible to use nonlinear least
square minimization methods to fit a model to a set of phenotypic data, but the convergence
of these methods is not automatic and may lead to a multiplicity of solutions. Both factors
raise a number of questions with respect to using molecular networks as nonlinear maps. A
method to fit a molecular network representing a bistable switch to various types of
phenotypic data is introduced. This method relies on the identification of the model’s stable
steady states and the estimation of the proportion of cells in each of them. By using
environmental perturbations, it is possible to collect time-series of phenotypic data resulting
in a smooth objective function leading to a good estimate of the parameters used to generate

the simulated phenotypes.

Introduction

Pharmacogenomics’ ambition is to relate a phenotype, the effect of a drug, to the
genotype of patients exposed to environmental conditions partly defined by the drugs they
receive . For a geneticist this project requires building a genotype to phenotype map (GP

map) of drug effects. Mathematically, a GP map is a function f such as
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phenotype = f (genotype,environment) . It maps into a phenotypic space, the product of a genetic

space generated by the genetic diversity in a population by the space of environmental
conditions to which individuals of this population can be exposed 2. The simplest GP map is
the one upon which relies Mendelian genetics. The function is Boolean, indicating the
presence or absence of a character. The environment is ignored and genes are considered
independent of each other. Since most traits are quantitative and not binary, the genetics of
quantitative traits relies on a more refined family of GP maps representing the phenotype as
linear statistical models. In general multiple loci are assumed to contribute additively to the
phenotype. In some cases terms representing digenic interactions are introduced. The effect
of the environment on the phenotype is generally decomposed into an additive term and a
genotype by environment term °.

Just like complex interactions between multiple genetic loci generate a diversity of
phenotypes for pathologies that were considered monogenic *, responses to drugs are
generally considered multigenic traits *°. Many of the genetic determinants controlling the
response to drugs have been identified by a candidate-gene approach relying on the
understanding of the molecular mechanisms of the drug action and metabolism. Integrating
into a mathematical model the network of molecular interactions affecting the response to a
drug is therefore an attractive avenue to build the GP map.

Using different approaches, a number of authors have recently demonstrated that it is
possible to build mathematical models to predict the phenotype controlled by small artificial

gene networks "', larger natural networks '*"

, or even genome-wide metabolic pathways
%15 Tn order to use a mathematical model as a GP map it is necessary to bridge the
molecular- and population-levels views of the genotype-phenotype relationship. When using
mass-action models of molecular interactions, it has proved possible to analyze the genetic
properties of a molecular network by associating genetic polymorphism with discrete kinetic
values of the parameter of each interaction '°. The possibility of determining the kinetic
parameters of each interaction is key to using molecular networks as GP maps.

One way to estimate the GP map parameters is to find a set of parameters minimizing the

difference between the phenotype predicted by the model and the observed phenotype. Since

the phenotype is a nonlinear function of the parameters, this problem can be addressed by
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h '”1® Nonlinear minimization methods are iterative

using a nonlinear least-square approac
algorithms that require a set of starting parameter values to converge to a local solution.
Different starting values can result in different solutions with different quality of fit. This
limitation has the potential to prevent a unique determination of the map parameters. The
topology of the molecular network model and the experimental design both contribute to
shape the objective function being minimized. The number and geometry of its local minima
determines the possibility to find and identify solutions corresponding to the actual
parameters’ values that generated the set of observed phenotypes. Since for many real
molecular networks, it is not possible to explore the entire parameter space, it is possible that
no starting parameter values will converge toward the actual parameter set. It is also possible
that many starting values will result in many solutions with similar fits, making it impossible
to distinguish the solutions closest to the actual parameter set. Few authors used nonlinear

129 and it is likely that a number

least-square minimization to estimate GP map parameters
of people attempted this without success and never published their negative results.

This paper introduces an algorithm to estimate the parameters of a molecular network
from time-series of molecular phenotypes collected after an environmental perturbation. The
objective function used takes into consideration the possibility that phenotypic data collected
at the cell population level result from a random distribution of the cells among multiple
stable-steady states. The presence of a positive feed-back loop ' creates the possibility of
multistationarity. Multiple steady states have been observed in artificial gene networks 2>
but also in natural regulatory networks *’, for which this possibility had not been considered
even recently >*.

The algorithm considered in this article is automatic and can be applied to virtually any
mass action model of molecular networks without requiring any manual mathematical

derivation.

Methods

Model

The model used in this article is a mass action equivalent of a model of a bi-stable switch

2931 1n the list of reactions below, G; and GX; refer to the active and inactive forms of the i
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gene coding for the protein P;, respectively, while L; represents the i™ ligand and PX; the i®
protein complexed with its ligand.
R;:G, —— G +P .
K Gene expression
R,:G, — 5 G, +P,

R;:R LN ) )
) Protein degradation
R,P, —> O
R,,R,:G, + 2P —=0X, (4.1)
Repression
R,,R,:G, +2P, k\—_gGXl
R,.R, 1P+ L, =—=PX,
B Repressor-ligand interaction

R;;,Rp, i P+ L, =E=PX,

The time-evolution of the model is represented by mass-action differential equations. The
set of coupled differential equations can automatically be derived from the chemical
equations Equation (4.1)*

Mass conservation relationships can be used to eliminate some variables from the model.
Assuming that there is only one copy of each of the two genes in the system, the first mass-
conservation relation makes it possible to eliminate the repressed forms of the genes. We also
assume that the interaction between the small molecules representing the environment and
the repressors are much faster than the other reactions. Using a quasi-steady state
approximation, we eliminate Ry to R;, from the model. This results in the list of reaction

rates below where X is the vector representing the state of the system and r; the rate of the

reaction R;:
| -2
G] rl(x)_k]Gl rs(x):k562|:l_{_|_l R
with X = :;)1 ’ r (X)—k2(32 I‘6(X)=k6(l Gz) i (42)
2 1
o) r0mkR ne0-ke
" (X)=k4P2 rS(X) ( )

The differential equation representing the time evolution of the system is derived from

this list of reaction rates.
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Numerical identification of the steady states

The most generic way of finding steady states is to find the solutions of Equation (4.3)
below. The notation below indicates that the reaction rates depend on the parameterization of

the model, K =(k,....k) , and the environment, E=(L,L,):

(X) 28(;()_{ ((X)) (X))
dX _rIX—r3X+2r6X—r5X B
a T ER)= ) () +2(n (X)=r (%)) | 4.3)

I (X)—I’5 (X)

Roots can be determined by minimizing ||F(X)| starting from any point in the model state

space. Since Equation (4.3) is nonlinear, it is not possible to analytically find its solutions. In
order to alleviate this limitation, a grid of starting points is created in a region of the state
space expected to include all the biologically relevant steady states of the model.

Variables corresponding to conserved molecules are bounded by the initial conditions.

Assuming that each gene in the model has a single copy, then 0<G, <1withi=1,2. The

asymptotic values of the non-conserved molecules, i.e. proteins in this case, is somewhere

between 0 and K, q,qion /Kegracation » th€ asymptotic value corresponding to the maximum

expression of the gene. Therefore, in the case of the model considered here, all the steady
states are expected to be within V =[0,1]x[0,k, /k,]1x[0,k, /k,]1x[0,1].

It is therefore possible to regularly sample V with a user-specified resolution. By starting
the minimization algorithm from each point in this grid, a numerical solution to Equation
(4.3) will generally be found for each starting point. Numerical errors and differences of
convergence toward the same limits will result in minor numerical differences between
solutions reached from different starting conditions. If the distance between a solution and
another previously found solution is less than some specified value, it is assumed that they
are identical.

After the scan of V is complete, the stability of the steady states is analyzed by
computing, at the steady state, the eigenvalues of the Jacobian matrix associated with

Equation (4.3). If the real parts of all eigenvalues are negative, then the steady state is stable.
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Fitting to asymptotic phenotypes
In the context of this article, “asymptotic phenotypes” refers to phenotypic data collected

33,34 .

in the stationary regime in different environments E; withj=1,...,v. Since in general all

variables of the model cannot be observed, the number of data points collected in each
environment g is less than M, the total number of state-variables of the model. It is

convenient to represent asymptotic phenotypes as a 4Xv matrix P. Now that the
experimental data set is structured, it is necessary to generate a predicted phenotype Q(K)
corresponding to a given set of parameters K. Assuming that it is possible to compute Q(K),

then the least-square distance that needs to be minimized to fit the model to the phenotypes,
d(K,P), is:

|4

4(K.P)=3 30 (K.E)-R(E)] (44)

i

Computing the predicted phenotype for a specified environment and set of parameters is
immediate if they result in a single stable steady state S. In this case:

S/ (K.Ej)=Q,(K.E}) i=L.,u j=1..v. (4.5)

In conditions where the model has two stable steady states S and T, then the observed
phenotype P is likely to result from a distribution of cells in the two steady states. So, instead
of having a direct correspondence between the predicted phenotype and the observed
phenotype, the predicted phenotype is a weighted average of the two stable steady states.
What is not known, though, is the proportion of cells in each of the steady states. This

proportion needs to be estimated by solving a linear constrained least-square problem:

Q(K.E)= ggﬁ](aS(K,E)Jr(l—a)T(K,E)—P(E)) . (4.6)

This approach can be generalized to more than two stable steady states.

Fitting to a time series of phenotypes

Observing the model state variables at different points in time is a natural way of
collecting data characterizing the model dynamics *>*°. Many experimental designs can lead

to this type of data. Only a single simple experiment is considered in this paper but it
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demonstrates that system multi-stationarity needs to be considered to properly analyze the
data.

A cell population is placed in a first environment E; until it reaches a stationary regime
indicated by the stabilization of the phenotype. An instantaneous perturbation is applied to
the environment, creating a new environmental condition E,. Phenotypic data are recorded at
different time points while the population stabilizes toward a new stationary regime. For
instance, cells can be grown in absence of ligands. One of the ligands is added to the growth
medium creating a new environment. Samples of cell culture are taken and phenotyped at
different points in time after the ligand has been added. This design can be generalized to
multiple environmental perturbations. E; jand E, j refer to first and second environments of
the jth perturbation. The first phenotype of each time series is collected in the stationary
regime before the perturbation is applied. All other phenotypes are collected in the second
environment and are indexed by the instant of observation. Similarly, it is necessary to
compute a series of predicted phenotypes corresponding to the series of experimental data.
The distance between the predicted and the observed phenotypes is computed by summing

the distance over all time-points:

[Q(K.Eyjut )P (Eaput) ] (4.7)

d(K.P)=

T M v
=1 j

=1 j=1

Let G(X,.K,E,t) be the solution of Equation (4.3) starting from X, . Computing the
predicted phenotype for a specified environmental perturbation and set of parameters is
immediate if the initial environment and parameter set result in a single stable steady state
S(K,E,). In this case the predicted phenotypes are extracted from the solution of Equation
(4.3) starting at S(K,E,): G(S(K.E,).K,E,.t,)=Q,(K.E, .t ). If the parameter set leads to two

steady states in the initial environment S(K,E, )and T(K,E,), then it is possible to estimate

the proportion « just as in Equation (4.6). The predicted phenotype would then be a

weighted average of trajectories starting from the two initial conditions S and T.

Application
The number of variables observed in the phenotype and the number of environments

where the phenotypes are observed are likely to have a significant impact on the possibility
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to match the model with phenotypic data. So, phenotypic data were simulated in different
numbers of environments and by recording different numbers of observed variables.
Twelve series of phenotypic data were generated using the same set of parameters. The
first six phenotypes were asymptotic phenotypes. The second group of six phenotypes were
time series.
In both cases (asymptotic and time series), three of the phenotypes consisted in the

observation of one protein, P,. In the remaining three phenotypes the values of both proteins

were recorded in the phenotype.

The asymptotic phenotypes were simulated in three different numbers of environments
(three, five, and nine environments). Environments are represented by the concentrations of
the two ligands, (L, L,). The first three environments were: (0,0), (10', 0), and (0, 10"). In
the five-environments experiments, (1, 0) and (0, 1) were added to the first 3 environments.
In the nine-environments experiments (107, 0), (10, 0), (0, 10™), and (0, 10%) were added to
the five previous environments.

The times series phenotypes are transitions between two environments. In the first
experiment, the transition from (10, 0) to (0, 10) was simulated. In the two-transition
experiment, the transition from (5, 0) to (0, 5) was added. In the three-transition experiment,
the transition from (1, 0) to (0, 1) was added to the two previous transitions.

The same set of 25 initial parameter values was used to fit the model to the asymptotic

and time-series phenotypes, resulting in a series of 300 optimizations.

Results

Numerical identification of steady states
The method to find the steady states of the model works well on this model. By using

only the eight “corners” of V, it seems that all the steady states of the system were found.
Increasing the resolution of the grid did not result in a larger list of steady states. Depending
on the environment and parameter values, two types of regimes were found: a single stable

steady state or two stable steady states and one unstable steady state.
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In the least-square minimization procedures, the specificity of this network made it

possible to use only two initial conditions (0.5,k, /k,,0,0.5) and (0.5,0,k, /k,,0.5) to find the

stable steady states of the system. This simplification speeds up the optimization process that
often requires hundreds or even thousands of steady state determinations. These two initial
conditions do not allow the identification of the unstable steady states of the system and this
approach may not be applicable to other models.

A bifurcation diagram was generated by computing the steady states (stable and unstable)
of the model over a range of L; concentrations in order to verify the steady state
identification procedure while the concentration of the second ligand was kept at zero. The
system is bi-stable for low concentrations of L; and beyond a critical concentration, the
system becomes mono-stable. This result is consistent with the bifurcation diagram of a
similar model *’ and also with our own bifurcation analysis run in XPP/AUT **. The
positions of the stable steady states are not very much affected by the concentration of L,
except in the vicinity of the critical concentration. This indicates the robustness of the

phenotype to environmental perturbation.

Fitting to asymptotic phenotypes

An exploration of the neighborhood of the original set of parameters used to generate the
phenotypes indicated that initial conditions very close to the original parameter set could not
lead to a good fit (data not shown). This indicated that the objective function was rough and
may be difficult to minimize. It turned out that convergence was much easier to achieve than
initially anticipated. When the phenotype included the two protein concentrations a good fit
was achieved for 5 of the initial conditions.

This can be explained by observing that an infinite number of parameterizations have the
same steady states. Solutions of Equation (4.3) verify Equation (4.8). The minimization
problem defined by asymptotic phenotypes is unidentifiable. It is not possible to estimate the

eight kinetic parameters but only the four equilibrium constants.
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Fitting to time series of phenotypes

The convergence criteria used in this case was a root mean square of residuals less than
10", Using this criterion, 14 convergences were observed (9% of the 150 optimizations using
time series phenotypes) that can be broken down into 13% of convergence when only one
protein is observed and 5% when both proteins are recorded. These rates of convergence
need to be confirmed by analyzing a larger number of initial conditions using a faster
implementation of this algorithm. However, they are surprisingly high and indicative of a
relatively smooth performance function.

All optimization solutions were indexed (not shown) for further analysis. In some cases
very similar solutions were found. For instance solution 13 is very close to solution 14 and
solution 11 is very close to solution 12. It is worth observing that if solutions 11, 13, and 14
all originated from the same initial condition, solution 12 was found using a different initial
condition. Also solutions 11 and 12 are not very far in the parameter space from solutions 13
and 14. Solution six is also located in the same area. Interestingly, these five solutions are all
very close to the original set of parameters used to generate the phenotype. The solutions
were verified by plotting the time course of the two protein concentrations and the profiles
are consistent with the objective function used to generate the solutions. Protein
concentrations corresponding to solution 11 were plotted over a wide range of initial
conditions. Visually they are indistinguishable from the plots generated by the original set of

parameters (Figure 4.1).
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Figure 4.1: In order to visually assess the quality of the fit, the ODE was integrated using two
solutions of the time-series optimization experiment and the original set of parameters used to generate
the simulated phenotypes. The initial condition for the integration was set to (1, 0, 10, 0) and the
environment to (0, 10). Solution six (top) was found when only one protein level was used in the
phenotype. It is interesting to see that the fit for P, is better than the fit for P,. The RMS computed using
the two protein concentrations at the 11 time points is 0.83. Solution 11 (bottom) gives a very good fit of
both of the protein expression profiles leading to a RMS of 0.06. It is necessary to zoom in on specific
region of the plot to be able to visually distinguish the trajectories generated by the original parameter

set and the trajectories generated by the parameters of Solution 11.

Discussion

Results

Even though this work focuses on a single molecular network model, results presented
here are likely to be relevant to other models.
e The specific structure of molecular networks makes it possible to search for
steady states in a limited volume of the model state space.
e The possibility of multi-stability should always be considered. In a population of
cells observed in a stationary regime, cells can be randomly distributed between
multiple steady states. Therefore, the measurement of a gene activity at the cell

population level is a weighted average of the molecule concentrations
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corresponding to the different stable steady states of the model. For a given set of
parameter values, different repartitions of the cells in the different steady states
lead to different qualities of fit between the model parameterization and the
observed phenotypes. In the context of this paper, a linear minimization step was
introduced to find the repartition minimizing the distance between the model and
the experimental data.

Asymptotic phenotypic data can only lead to the determination of the equilibrium
constants but not the kinetic constants.

Environmental perturbations can be used to collect time-series of phenotypic data.
The relaxation profile observed is a weighted average of trajectories originating

from the different stable steady states in the first environment.

Necessary improvements of the algorithm

In order for this method to be used for routine analysis it will be necessary to address a

few issues.

The steady state finding algorithm needs to be systematically validated. In some
cases very stiff parameter sets hampered the convergence of the steady state
identification procedure. The reasons for this behavior need to be understood.
Since the steady state identification algorithm is the bottleneck of the whole
optimization process it is worth trying to improve it.

Determining the stability of the steady states is also an important step of the
algorithm. Numerical errors prevent an accurate determination of the stability in
the vicinity of critical points. It is not clear what is the impact of this issue on the
outcome of the minimization process. Limit cycles are not considered in this
algorithm.

The local optimization method described in this paper needs to be coupled to a
global search strategy to explore the parameter space more systematically.

In cases where the time of sampling cannot be controlled, it could be necessary to
take the actual sampling time into consideration when fitting the model to the

data.
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e A random term representing the measurement error needs to be added to the
phenotypic data. The effect of this term on the convergence of the least-square
minimization should be characterized. The addition of an error term would
transform the least-square minimization problem into a nonlinear regression
problem that could lead to computing confidence intervals for the parameter

estimates.

Research directions

We are working on a generalization of this algorithm to handle phenotypic data collected
on a multiplicity of genotypes just like several environmental conditions have been
considered in this paper. Along the same line, the current model assumes only one copy of
each gene. Introducing a diploid genome with two homologous copies of each gene would
require predicting the phenotype of heterozygous individuals, which requires developing a
model of dominance at the parameter level. If only homozygous individuals are considered or
a total dominance is assumed, the model would remain unchanged.

Geneticists have been building models of the genotype to phenotype relationship for traits
of other organisms for more than a century. By deciphering networks of molecular
interactions, they hope to be able to build nonlinear GP maps inspired by the mechanisms
controlling the expression of complex traits. It is expected that these maps would capture
epistatic interactions between the genetic determinants contributing to these traits. Such a
map would help a breeder to define more effective breeding strategies using molecular
markers to manipulate alleles of genes contributing to trait variations or using transgene to
introduce new sources of genetic variation, help a human geneticist to better understand how
multiple genes can contribute to the development of a pathology, and help
pharmacogeneticists to customize a medication to the genotype of their patients.
Mathematical methods, such as those described here, are needed to analyze molecular data.
The next challenge may be to find ways of associating macroscopic phenotypes such as a

patient response to a treatment, with the molecular data we collect and analyze.
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Abstract

Classical quantitative genetics has applied linear modeling to the problem of mapping
genotypic to phenotypic variation. Much of this theory was developed prior to
availability of molecular biology. The current understanding of the mechanisms of gene
expression indicates the importance of non-linear effects resulting from gene interactions.
We provide a bridge between genetics and gene network theories by relating key
concepts from quantitative genetics to the parameters, variables, and performance
functions of genetic networks. We illustrate this methodology by simulating the genetic
switch controlling the galactose metabolism in yeast and its response to selection for a
population of individuals. Results indicate that genes have heterogeneous contributions to
phenotypes and that additive and non-additive effects are context dependent. Early cycles
of selection suggest strong additive effects attributed to some genes. Later cycles suggest
the presence of strong context dependent non-additive effects that are conditional on the
outcomes of earlier selection cycles. A single favorable allele cannot be consistently
identified for most loci. These results highlight the complications that can arise with the
presence of non-linear effects associated with genes acting in networks when selection is
conducted on a population of individuals segregating for the genes contributing to the

network.
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Introduction

Recently there has been interest in interpreting the quantitative genetic properties of
gene networks at the population level "2 This is warranted on at least three grounds: (1)
much of the molecular genetic evidence points to the roles of genes in non-linear
networks in the determination of gene-to-phenotype relationships, (ii) we have a growing
body of data on the structural and functional properties of the genomes of organisms and
as this pool of data continues to expand it is becoming more feasible to construct models
of gene networks, and (iii) for many aspects of basic and applied genetics it is necessary
to study the properties of allelic variation for genes at the level of phenotypic effects and
variation within populations. Bridging the molecular and population level views of gene-
to-phenotype relationships is a challenging area of research for quantitative genetics. At
present there is no agreed upon quantitative framework but a number of approaches are
being investigated. We constructed a model of the gene network controlling the galactose
metabolism pathway in yeast using differential equations. This model has been used as a
genotype to phenotype map with which to evaluate the performance of individuals in
simulations of a mass selection process. Combining these two approaches makes it
possible to analyze the epistatic interactions between the genes controlling this pathway
and their impact on the selection process.

Fundamental to genetics is the relationship between the genotype of an individual, the
environment where it lives, and its resulting phenotype. This relationship is often referred
to as genotype to phenotype (GP) mapping. Since the true mechanisms of gene
expression have historically been poorly understood, geneticists have derived such
mappings from the joint distributions of genotypic and phenotypic data. The simplest
mapping, Mendelian genetics, considers traits that are completely determined by
individual genes. Many traits, however, are more complex than that; they are quantitative
in nature and are influenced by contributions from alleles at multiple loci. These multiple
gene cases have been studied using linear statistical models that allow both additive and
non-additive (dominance and epistasis) effects >. Complex traits are also often dependent
on the environment in which a genotype is expressed. In addition to the direct effect of
the environment, genotype by environment (GxE) interactions can have important effects

on complex traits. Traditionally, genotype to phenotype mappings have predominantly
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been linear combinations of terms representing dominance, epistasis, GXE interactions,
and genotype by genotype (GxG) interactions *.

Even though these linear statistical relationships allowed geneticists to represent the
phenotypic variability of a large number of simple traits, working beyond the limitations
of linear mappings is one of the main challenges faced by genetics today. Interactions
between genes contribute to complex phenotypes in plants **, mice °, and
microorganisms . Genetic factors that contribute to many pathologies do not have any
direct effect on the phenotypes that are essentially determined by GXE and GxG

interactions ‘>3

. These observations are interpreted as non-linear effects of gene
interactions and are usually referred to collectively as epistatic effects ',

De Jong has recently reviewed various families of models that have been used to
represent genetic networks . Considering the small copy number of the molecules
involved in gene expression mechanisms, Markovian models '®'” based on a stochastic
version of the mass action law are an appealing representation of gene network dynamics.
However, the cost of computing Monte-Carlo simulations limits their use to only those
pathways having a well-documented stochastic outcome at the cellular level 18,15
Approximating the network dynamics by a system of differential equations provides a
useful compromise between a realistic representation, speed of simulation, and a wealth

of theoretical properties and analysis techniques that can complement numerical

simulations.

Materials and methods
Modeling the galactose genetic switch: The galactose pathway is an attractive

system for dynamic modeling since it integrates a gene network, a metabolic pathway,
and a response to environmental perturbations. In a first approximation, it is possible to
associate the phenotype to the activity of the metabolic pathway and the genotype to the
genes in this pathway. Our model of the GAL system (Figure 5.1 and Table 5.1) is a
simplistic representation of the complex mechanisms of gene expression. It is
representative of the common understanding of the molecular mechanisms responsible

for the response of yeast to the presence of galactose and glucose in its environment.
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Figure 5.1: Diagrammatic representation of the Galactose switch

Recent overviews of the GAL switch have been provided by Ideker * and Ostergaard *. GalExt
and GIuExt are the two environmental variables of the system. Galactose is transported into the cell
primarily by Gal2p using an ATP-dependent mechanism. It is necessary to take into consideration a
small passive diffusion of galactose into the cell to trigger the induction of the GAL genes by
galactose. Although there are a number of well-characterized metabolites between galactose and
glucose 6-phosphate, we represent the whole pathway by a single step catalyzed by a hypothetical
enzyme labeled E. Since the glucose-6-phosphatase catalyzing the transformation of Glu-6P into
glucose is not part of the GAL network, it was omitted from the model. The gene coding for Gal4p,
gal4g, can be in a repressed form gal4gX when complexed by Mig1 in the presence of glucose *3°,
For simplicity we considered a single enzyme in the pathway coded by a single gene noted GAL. The
expression of GAL is induced by Gal4p. When in the induced state GAL-4, it expresses the E enzyme
along with the Gal3p and Gal80p transcription factors. Gal80p represses this expression by binding
to the GAL-4 complex. Gal3p is the galactose sensor of the GAL system. Galactose binds Gal3p
through an ATP-dependent mechanism. The resulting complex Gal3p* binds to the GAL-4-80

complex and induces the expression of the GAL genes*.
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Reaction Equation AlAL|ALA2|A2A2
DO01|Gal80p - 0 30 50| 70
D02|Gal4p - 0 16 36| 56
D03|Gal3p -0 221 40| 58
D04|Glu -0 50| 50| 50
DOS|E-0 66 82 98
RO1 |GalExt- Gal 1 1
RO2 |E + GalExt — Gal + E 6 7
RO3|E + Gal - Glu-6P + E 12 19
R04 |Glu-6P - Glu 100| 100| 100
RO5 |GluExt - Glu 10 10 10
R06|Glu + galdg — galdgX 7 10 13
RO7|Glu + galdg — gal4gX 1 2 3
RO8 |galdg — galdg + Galdp 4 23 42
R09|GAL + Galdp — GAL-4 3 7 11
R10|GAL + Galdp — GAL-4 8 9 10
R11|GAL-4 + Gal80p - GAL-4-80 2| 35 5
R12|GAL-4 + Gal80p — GAL-4-80 3 7
R13|Gal3p* + GAL-4-80 — GAL-4-80-3 6 10
R14|Gal3p* + GAL-4-80 — GAL-4-80-3 1 10 19
R15|Gal + Gal3p — Gal3p* 1194 1320| 1446
R16|Gal + Gal3p — Gal3p* 700| 809 918
R17|GAL-4 - GAL-4 +E 10 19| 28
R18|GAL-4 - GAL-4 + Gal3p 1 2 3
R19(GAL-4 - GAL-4 + Gal80p 15| 101| 187
R20 [GAL-4-80-3 - GAL-4-80-3 + E 330 336| 342
R21|GAL-4-80-3 — GAL-4-80-3 + Gal3p 178 309( 440
R22|GAL-4-80-3 -~ GAL-4-80-3 + Gal80p| 294| 338| 382

Reactions are labeled in the first column. The chemical equation of the reaction is given in
column 2. Each parameter has two allelic values Al and A2. The columns A1A1, A1A2, and A2A2
indicate the parameter values used when genotypes are homozygous (A1Al and A2A2) or
heterozygous (A1A2). Parameters in bold characters indicate the genotype of the individual with the
highest performance that was generated at the 35" generation of the 34" run. Parameters
highlighted by a gray background correspond to the favorable alleles that were consistently fixed in
more than 95% of the 1,000 runs. Lines (Reactions) in italic are non-segregating in Experiment 1 and

Experiment 2 because they correspond to interactions outside of the GAL system. Parameter values

Table 5.1: Chemical equations and parameters

highlighted in gray were made non-segregating in Experiment 2.
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Biology: To date, the effect of the environment has often been ignored in models of
gene networks. Alternatively, it is possible to consider the environment as a set of
external parameters, where simulation runs with various parameter values can be
compared to evaluate the impact of the environment on the model dynamics *°. For many
situations it seems that this approach is able to capture the biological logic of the
network. In the case of the galactose pathway of yeast, the environment can change the
state of the genetic switch by inducing or repressing the expression of the GAL genes.
However, the relationship between the network and its environment is not one-way. The
induction of the GAL genes by galactose results in the transformation of galactose into
glucose. This transformation introduces a feedback loop by which the induced state of the
GAL system leads to a modification of the environmental conditions that lead to this
induction. In an effort to capture this behavior, we introduced in the model GalExt and
GluExt, which can be regarded as external pools of molecules not affected by the
dynamics of intracellular reactions. Passive diffusion or active transport of these
molecules into the cell can be represented by chemical equations transforming these
molecules into their intracellular counterparts, Gal and Glu, respectively (reactions RO1,
R02, and RO5 in Table 5.1). Gal and Glu can be regarded as the variables indicative of
the intracellular environment. The value of the two control variables GalExt and GluExt
indicate the presence of sugars in the environment. Absence and presence were indicated
by 0 and 10, respectively. The combination of GalExt and GluExt values defines an
environment.

Dynamics: The time-evolution of the model is represented by mass-action differential
equations. The set of coupled differential equations can automatically be derived from the
chemical equations of Table 5.1 ', Specifically, the matrices of stoichiometric

coefficients for the reactants ¢, and products f  of the reactions can be used to

represent the generic form of a chemical equation:
M ‘ M
Rr :zai,rxi : }Zﬁi,rxi (41)
i=1 i=1

The rate v, of each reaction depends on the concentration of its reactants:
M "
v =k JT[X]™ (4.2)
i=1
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The time-evolution of a molecule concentration is ruled by the balance between the

rates of the reactions producing this molecule and the ones using it as a reactant:
d[X,]
T‘:Z BN, =D eV, (4.3)
r r

The complete set of differential equations is given in the Appendix in MATLAB
format.

Genotypes, phenotypes, and traits: In order to analyze the response of a gene
network to selective pressure, it is necessary to establish a correspondence between the
basic properties of genetics at a population level and the characteristics of genetic
networks. Our analysis relies on the following:

Segregating loci as model parameters: The reaction rates are genetically determined.
It is well established that directed mutations of promoters or protein domains can affect
the rates of protein-DNA interactions, protein-protein interactions, gene expression, or
even affect the catalytic properties of an enzyme. Hence, each parameter is determined by
a number of segregating loci. The precise mapping of the genetic space onto the
parameter space depends on the number of genes involved (N) and the extent of genetic
polymorphism. In the case of a bimolecular reaction like R09 (Table 5.1, Figure 5.1), the
rate of the binding of the Gal4p protein on the GAL promoter can be determined by the
sequence coding for Gal4p and by the regulatory sequence of GAL. Potentially, two loci
could determine the rate of this reaction but if only one of them is polymorphic, it is not
necessary to consider in the model the locus corresponding to the conserved sequence. In
the context of this paper, a single locus was associated with each parameter (i.e. N=27).

Alleles as discrete parameter values: The association between loci and parameters
makes it natural to associate allelic polymorphism with variation of specific parameter
values. Each polymorphic locus is assumed to have two alleles in this paper (larger
numbers can be considered). A null allele translates into a zero value of the
corresponding parameter. Alleles having a less dramatic effect result in parameters
having an x-fold higher or smaller value than the wild-type. The within locus parameter
values are assumed to be additive so that the heterozygous genotype is given the average
parameter value of the homozygous genotypes for the two alleles. Different levels of

dominance at the individual parameter level can be allowed but are not considered here.
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In the context of this article, we do not consider the possibility of introducing mutations.
The genetic space is thus finite and discrete. Its 3" genotypes are the 3~ parameter
combinations resulting from the selection of one of the three possible parameter values
(columns) in each of the 27 lines of Table 5.1.

Phenotypes as vectors of traits: Traditionally the phenotype of an individual is
defined by the value of the biometric data that can be measured at some point in time
(e.g. grain yield of crops, the number of bristles on a segment of Drosophila spp). These
biometric data rarely translate directly into molecular variables but they are indicative of
the performance of the individual. In order to relate a model to experimental
observations, it is necessary to derive trait values from the model itself.

Traits as functions of a model: The biometric data collected to score a trait are static,
time-independent observations. Even though life is a dynamic process that develops in
time, phenotypes are observed in standard conditions that remove time from the
observation. Even traits tightly associated with the timing of development are considered
static in genetics. The transition from vegetative growth to reproduction or flowering
time provides a good illustration of this point. The whole developmental process is
reduced to a single datum, the time of the transition to flowering. The genetic analysis of
this trait relies primarily on this single observation of individuals in a population. Traits
are a means to score the various characteristics of genotypes. In the case of the GAL
system, the most obvious trait is the capability to process galactose when it is the only
source of carbon available. How does this translate in the context of our model of the
galactose switch? There are several possible interpretations of this trait. The variable
representing the enzymes or the variables representing metabolites can be used as
indicators. In this case we elected to use Glu-6P as an indicator of the state of the
galactose pathway. In order to quantify the trait, we assigned target values for Glu-6P in
the 3 environments (we ignore the trivial case where no sugar is present Gal-Glu-).
Arbitrarily, we decided that Glu-6P should be 0 in the two environments where the
pathway should not work (Gal-Glu+, Gal+Glu+) and 2 in Gal+Glu-. The system of

differential equations was integrated between t=0 and t=10" where it is assumed to reach

steady-state. By noting X , (104) the value of Glu-6P at time 10* in the Glu+Gal-

environment, this first trait is:
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T, (KpseosKyy ) = \/(x (104)_2)2 (%, (104)_0)2 (%, (104)_0)2 (4.4)
A second trait was also defined for this model. Comparable levels of external

galactose and glucose are expected to lead to comparable levels of internal glucose. By

noting Y_, (104) the value of Glu at time 10* in the Gal-Glu+ environment, this second

trait is:

T, (Koo ko ) = \/(Y (10°)=2) +(v,, (10*)—2) +(¥_. (10*)-2) (4.5)

A trait value can be computed for each of the genotypes of the genetic spaced

considered in this article. So, for instance,
T, (30,36, 22,50,66,1,7,5,100,10,7,1,4,3,8,2,3,6,1,1194,700,10, 1,15,330,178,294) is the

trait value of the genotype where all loci are A1A1 expect D02 (A1A2) and R02 (A2A2)
Performance as a function of traits: A numerical performance function is computed
for selection purpose. This summarizes results from a number of elementary traits that
determine how well an individual performs in a given environment. There are multiple
ways of combining several trait values in a performance function. In the context of this

work, we considered:
®(k1,...,k27)=T1 (kl,...,k27).T2 (kl,...,k27) (4.6)

Simulation of selection: To simulate effects of selection operating on the model of
the galactose pathway, we developed a simple genetic algorithm application that was
interfaced with a gene network simulator utilizing CVODE *. For this article we have
limited ourselves to a mass selection strategy where the phenotype of an individual is the
only criterion used to evaluate the performance of a genotype.

The initial population (500 individuals) contained equal numbers of each allele at all
segregating loci in the galactose pathway model. A constant selection pressure of 20%
was applied to all cycles of selection across all simulations. We simulated a case where
there was sustained directional selection for smaller values of the performance function

over 100 cycles of selection. One thousand replicates of the simulation were conducted.
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Results

Model: The model of the molecular network described in this paper has two specific
features not commonly found in the literature on gene networks: (1) control variables are
used to represent the dynamic interaction of the model with the environment; (2) trait and
performance functions are defined to evaluate the performance of a model
parameterization.

Control variables: For the sake of reproducibility, the simulations described in this
paper do not take full advantage of the possible time evolution of control variables.
Instead of assigning a constant value to environmental factors such as the sugar
concentrations, it is possible to specify the variation of these concentrations in time. This
feature makes it possible to evaluate other traits of the model. For instance, it is possible
to quantify the ability of the network to react to changes of the environment. The trait
functions described in this work do not distinguish the networks that will quickly adapt to
new conditions from the ones that will need more time to turn the galactose switch ON
and OFF. In models of other regulatory networks, control variables had also been used to
represent the effect of physical parameters of the environment such as temperature,

volume, or light.

Environment Glu-6P Glu

Gal-Glu+ 0.000000 2.000000
Gal+Glu- 1.994018 3.988036
Gal+Glu+ 0.011255 2.022515
Performance = 0.025341 T, = 0.012746 T, = 1.988163

Table 5.2: Performance computation

In order to illustrate how performance is computed, the performance of the best performing
individual generated across the entire simulation is computed in this table. This individual was found
in the 35" generation of the 34" run of the simulation. Simulations were run in the 3 different
environments containing sugars and the value of Glu-6P and Glu at t=10* are reported in this table.
The two traits can be derived from these data by using equations (4.4) and (4.5). The performance

score is the product of the two trait values.

Performance function: In order to assess the way individuals are scored by the
performance value, we looked for the individual with the lowest performance value that

was generated across the entire experiment. This individual was found at the 35" cycle of
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run 34. It is interesting that this individual was not found in the population generated at
the end of the selection process (cycle 100). The performance value of the best individual
is approximately 0.025 (see Table 5.2). The values achieved at the end of the selection
process are typically close to 0.20. This 8-fold difference tends to indicate that a dramatic
loss of performance occurred during the selection process. That is when it becomes
necessary to examine how these performance values are achieved, i.e. the property of the
trait and performance functions used in the simulation. The values in Table 5.2 show that
the target values for Glu-6P are reached in the three environmental conditions and T; can
reach a very low value. This is not the case for T,. The target values for Glu are reached
in Gal-Glu+ and Gal+Glu+ conditions but we cannot get close to the target value of 2 in
the Gal+Glu- condition. When the best individual is compared to the best individuals
typically found in the last cycle of selection, it turns out that their behavior is very
comparable. Minimal changes in Glu-6P values result in a significant difference in the T}
value, which propagates to the performance value. Even more interesting is the
examination of the time-evolution of Glu-6P and Glu when the molecular network is
integrated. Asymptotic values are quickly reached in Gal-Glu+ and Gal+Glu- but the
system oscillates when placed in Gal+Glu+ conditions. The amplitudes of the oscillations
are significant (0.5 for Glu and 0.3 for Glu-6P) but the values are close to the target
values at t = 10*. This shows how dependant is the outcome of the selection process on
the trait and performance functions.

Simulations: Running such an experiment is a significant computational challenge.
There are very significant differences of simulation time between runs since some
simulations can be achieved in 1.7 hours while others would take up to 4.4 hours on a
processor running at 2.8 GHz. Most of the time is spent evaluating the performance of
50,000 individuals generated during 100 populations of 500 individuals. Since the model
needs to be simulated in three different environmental conditions, the differential
equations are integrated 150,000 times in each run. In order to speed up the genetic
algorithm, previously evaluated phenotypes are recorded in a cache. Some simulations
are likely to explore larger regions of the genetic space than others. Even though the total
number of individuals evaluated is the same for all simulations, some will evaluate more

gentoypes than others, which explains the differences of simulation time. In order to
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complete the 1,000 runs in an acceptable time (approximately 15 hours), the simulations
were distributed over the 56 nodes of a Linux cluster, each node having two processors.
The selection process simulated in this experiment is extremely basic. Its implementation
did not require much programming. In order to use the analyze the response of regulatory
networks to actual breeding programs, we also interfaced the molecular network
simulation environment with QU-GENE, an environment for simulating breeding
strategies 2%,

Response to selection: There are two ways to analyze the network response to
selection. The time-evolution of performance is indicative of the effect of selection while
the time-evolution of allele frequencies tells us how this effect is achieved. Two
experiments (series of 1,000 simulations with identical parameters and initial conditions)
were conducted. In Experiment 1, the only non-segregating loci were those
corresponding to interactions that are often considered “outside” the Galactose switch. In

a second experiment, Experiment 2, we also fixed the favorable alleles of loci having an

additive effect in the results of Experiment 1 (see Table 5.1 for details).
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Figure 5.2: Time evolution of the population average performance distribution

Data were recorded during Experiment 1 and Experiment 2, each consisting of 1,000
simulations. Histograms of the inverse of the population average performance values were computed
for each of the 100 cycles of selection and the frequency color-coded. Results from Experiment 1 (left)
show that the distribution is clearly non-normal since it exhibits at least eight modes. Beyond cycle
80, the selection process has reached its asymptotic distribution. The distribution observed in
Experiment 2 (center) is fairly similar to results of Experiment 1. The main difference is the weight
of the bottom mode (blue peak) indicating that a large fraction of the simulations never achieved
good performance values. In order to better compare these two distributions, the time evolutions of
their mean values were plotted on the third graph (right). It shows that better performance is
achieved in Experiment 2 (green line) for the early phases of the selection process. However, the long

term response to selection in Experiment 2 is not as good as in Experiment 1.
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The response to selection of this genetic system can be illustrated by graphing the
evolution over cycles of selection of the mean performance value of the population.
However, in the case of this experiment this graph did not appear the most appropriate.
The best performers in our experiment have the lowest performance value. As a result the
selection results in a reduction of performance values over time. The other problem is
that the performance function has an absolute lower bound. So the plot of the mean
performance values over cycles of selection is difficult to read since all the runs tend to
accumulate toward 0. To overcome these difficulties, the statistical distribution of the
inverse of the mean performance value was plotted (Figure 5.2).

Experiment 1: The statistical distribution of mean performance values is initially
unimodal (Figure 5.2, left). Beyond cycle 50 or so up to eight modes can be identified.
Interestingly, there is a mode corresponding to poor levels of performance. There are also
two major modes corresponding to good performance and a few minor modes of
intermediate values. Beyond cycle 50, the selection process appears to have reached its
asymptotic distribution. However, the observation of individual trajectories indicates that
despite a constant selection pressure, the populations can move from one mode to the
other, resulting in quick gains or losses of performance even in the stationary regime.
This pattern indicates that the performance landscape is complex with multiple local
maxima and that the fluctuations of the selection process are large enough to move the
population from one peak to the next.

Allele frequencies exhibit a fairly complex behavior at most loci (Figure 5.3, top).
Fixation of one of the two alleles in more than 95% of the runs is observed for seven loci
(D02, D05, RO8, R14, R18, R19, R21). In the other cases the final allele frequencies are
variable and are distributed between 0 and 1 with peaks at 0%, 50%, and 100%. Thus,
either one of the homozygotes or the heterozygote could be favored depending on the
replicate. So for most loci it is not possible to clearly identify a consistently favorable
allele; the favorable allele is highly context dependent. Also, since a small percentage of
the runs lead to retaining the heterozygous state, both alleles could be retained. Also
included in Figure 5.3 is the time-evolution of the four parameters that are not

polymorphic. They are the only ones exhibiting a random drift behavior. These loci can



73

thus be considered as negative controls. All the polymorphic loci have some selective

value in this experiment since none of them drift as the non-polymorphic ones do.

Cycle =5 Cycle = 25 Cycle = 45 Cycle = 65 Cycle = 85

D01 : : ! :
D02
Do3
D04
D05
RO1
R02
RO3
R0O4
RO5
R06
RO7
R0O8
R0O9
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%

Figure 5.3: Evolution of alleles frequencies under selection

During the Monte-Carlo simulations corresponding to Figure 5.2, the frequencies of allele Al at
each of the 27 loci were recorded. Histograms of these frequencies were color-coded as in Figure 5.2.
To illustrate the effect of the selection process on the genetic makeup of the population, five
histograms corresponding to the selection cycles 5, 25, 45, 65, and 85 are displayed. In Experiment 1,
D02, D05, R08, R14, R18, R19, R21 one of the two alleles is consistently fixed in more than 95% of
the simulations. For most loci, however, no allele is fixed. Frequency distribution is multimodal with
peaks at 0%, 100% and often 50%. Non-polymorphic loci (D04, R01, R04, and R05) exhibit a pattern
indicative of genetic drift.

Experiment 2: In Experiment 2, the seven loci that had a favorable allele in
Experiment 1 were fixed and thus made non-polymorphic (see Table 5.1) By fixing the
favorable allele in the parameter file, it was anticipated that the transient phase of the
selection process would be shortened. It turns out that the initial mean performance
values are actually better (Figure 5.2, center) as anticipated. However, the asymptotic
distributions are significantly different. The heavily loaded mode at the bottom of the plot
indicates that a large fraction of the simulations never manage to achieve good levels of

performance. This is confirmed by comparing the time evolution of the mean of these
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two distributions (Figure 5.2, left). The mean for Experiment 2 (green line) is initially
higher than the mean of Experiment 1 (blue line). Since, initially, the performance
response is slow, this results in almost a 10-cycle advantage provided by the fixation of
favorable alleles. However, there is a long-time cost to this more limited genetic
variability since the long-term response of Experiment 2 is not as good as in Experiment
1. The response of allele frequencies to selection is very similar in Experiment 1 and
Experiment 2 even though some minor quantitative difference can be observed.

Future work will relate the peaks of the performance distribution (Figure 5.3) with the
distributions of the allele frequencies. It appears that the context dependent combinations
of alleles emphasized by the results of the different replicates of the selection process
correspond to different peaks of performance on a moderately rugged landscape (data not

shown).

Discussion

Molecular networks as GP maps: GP maps have traditionally been based on
statistical models. In some cases we now have enough understanding of the molecular
mechanisms to capture their dynamics into mathematical models. There are some
indications in the recent literature that we now have models with some predictive power
of the phenotype *>2*. Analyzing the genetic properties of regulatory networks raises a
number of theoretical and technical problems, which explains the limited numbers of
articles dealing with this problem.

Non-linear GP maps: Introduction of non-linear terms in genotype to phenotype
mappings leads to considerable theoretical difficulties that prevent any closed-form
expression of the model properties. As suggested by Kempthorne °, the development of
software to simulate genotype-environment systems (e.g. plant breeding programs) has
enabled geneticists to explore the genetic consequences of non-linear mappings in silico
430 without the need for an analytic result. The E(NK) framework provides a foundation
for an in silico approach to genetic analysis of the properties of linear and non-linear
gene-to-phenotype mappings at the individual and population levels Y ltis specified as a
generalization of Kauffman's NK gene network model *', where a set of N genes are

assumed to be under the control of, on average, K other genes in the network. The E(NK)
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framework incorporates GxE interactions through allowing a series of NK genotype to
phenotype relationships corresponding to different environment types for a given target
population of environment types. Here the target population of environments is defined
as a mixture model of different environment-types. Within this generic modeling
framework various types of genotype to phenotype mappings can be implemented ***°.
So far we have examined a wide range of artificial gene networks, results from molecular
map based genetic mapping of traits, and a combination of genetic analysis and crop
growth models *. In this paper, we describe a way to build a genotype to phenotype map
within the E(NK) framework that relies on our understanding of the molecular
mechanisms of gene expression.

It is interesting to relate the results presented in this paper to previous work based on
the E(NK) framework. In a broad perspective, molecular networks can be considered as
E(NK) models. In the context of this paper we have N=27 loci and E=3 environments.
Even though the loci in our model interact, quantifying the level of connections between
genes, K, proves difficult. In molecular networks, interactions between genes often
involved more than one reaction. Hence there is not straightforward way of computing K.
This limitation does not really matter since it is often used as a summary statistics in
experiments based on an ensemble approach to gene networks. Since in this paper the
network we analyze is not random, the actual topology of the network is more
meaningful than the parameter K.

Computational challenges: Simulating the evolution of a population of network
models requires solving the model with a large number of different parameterizations
(size of the population x number of generations). In order to estimate the fluctuations of
the selection process, it is necessary to repeat the simulation of the network evolution a
large number of times. Since dynamic models are orders of magnitude more expensive to
simulate than a static model of a GP map, running an experiment such as the one
described in this paper is a significant technical challenge.

Multiscale models: A major challenge in using regulatory gene networks or metabolic
pathways as genotype to phenotype mappings is that gene networks are dynamical
systems and consequently their properties are defined by reference to their time

evolution. In contrast, the common genetics view is a more static vision of the



76

relationship between the genotype of an individual and its phenotype. Time is included to
describe the evolution of populations of individuals across generations. Analysis of the
genetics of gene networks requires introducing a different time scale. By introducing a
correspondence between genetic loci and the parameter space of a gene network on the
one hand, and by defining trait functions to quantify the performance of a model
parameterization on the other hand, we reconcile a theoretical framework that assumes a
static relationship between phenotype and genotype with dynamical models of gene
expression.

An important step of this approach is to reduce the time-evolution of the gene
network into a set of static gene to phenotype relationships. So far, the performance of
gene networks has been reduced to the asymptotic level of expression of one or few

. . . . .. 34.35
genes in one particular set of simulation conditions ™

. In this paper we have formalized
and generalized the notion of trait and performance functions applied to models of
molecular interactions. Instead of focusing on the level of expression of specific genes,
the traits considered in this paper are derived from metabolite concentrations. These
indicators integrate the effect of all genes in the system along with the effects of
environmental parameters. This approach makes it possible to integrate the environment
in the GP maps derived from molecular networks. In other simulations, we have defined
on the same model, trait functions to quantify the ability of the model to quickly react to
environmental perturbations or to quantify the stability and robustness of a network (not
shown).

Trait and performance functions: We were surprised to find networks exhibiting
oscillations in one environment at the end of the selection process. This observation
illustrates the dependence of the selection outcome on the trait functions and performance
index. By using a naive expression of the trait that relied on a single data point rather than
calculating a trend, the selection process lead to parameterization consistent with our
specification of the selection target but more complex than we anticipated. Similarly, we
illustrate that finding the right expression to combine several traits into a single
performance index is challenging. Again, the examination of the outcome of the selection
showed that the performance function we used in this experiment is not optimal. The

choice of trait and performance functions is partly subjective since there is not one single
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way to quantify the properties that will be maximized by the selection process. By
comparing the outcome of simulated selection using different performance functions, it
might be possible to evaluate their relevance in the computer before using them in actual
breeding programs.

Genetics of molecular networks: Even though the model of the galactose switch
considered in this paper has not been validated by any experimental data, the results are
probably representative of the results we would get from a model derived from molecular
data. It will be necessary to apply the same approach to a number of molecular networks
models to better understand the model topology and regulation translate into genetic
properties.

Performance landscape: The multiple modes of the asymptotic distribution of the
average performance values demonstrate that the outcome of the selection process is
highly uncertain from a common starting point. In the context of plant breeding programs
where there is only a single realization of the selection process, this observation raises a
number of issues for risk management and breeding program design. From an
evolutionary perspective, it is striking that given a deterministic genotype to phenotype
mapping and a stable environment, the selection process can have a large diversity of
outcomes. It would be interesting to investigate the properties of the performance
landscape in vivo. This would require conducting a large number of selection experiments
in parallel starting from identical conditions. Conducting such an experiment requires
having first derived from a molecular network model, a GP map explaining a large
number of observed genotype to phenotype relationships. Such a map should also have
some prediction power on the unobserved regions of the genetic space. The derivation of
validated GP maps from the understanding of molecular mechanisms controlling the
expression of complex traits remains a major scientific challenge °.

Exploration of the genetic space: Assuming that a GP map with a good prediction
power is available, then another possible application of this type of simulations is the
identification of the genotypes with outstanding levels of performance by exploring the
genetic space in silico rather than in vivo. These genotypes could then be assembled by

fixing alleles one locus at a time using genotyping techniques and marker based selection.
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This application could be evaluated today by introducing a genetic variability in artificial
gene networks 27"’

Molecular noise: In the context of this article, the gene network dynamics have been
represented by differential equations. It is recognized that the small copy number of some
molecules involved in the mechanisms of gene expression (e.g. transcription complexes,
genes) can result in molecular fluctuations responsible for some level of phenotypic

variability. This has been addressed theoretically 7, numerically '**

, and experimentally
%% Using a stochastic model of the gene network dynamics might have a significant
impact on the outcome of the selection process. It is likely to smooth the performance
landscape. Having non-deterministic performance values would also reduce the
likelihood of the process from being trapped on local performance minima. By modeling
molecular interactions with mass-action equations as opposed to specialized biochemical
kinetics, it is possible to simulate the fluctuations of molecular interactions without
changing the model. In a follow-up paper we will show how molecular noise can
influence the response to selection of a molecular network. It seems likely that molecular
noise influences the expression of some complex traits in higher organisms ***'. The
framework described in this paper makes it possible to investigate its evolutionary
consequences.

Context-dependency of genetic effects: For seven of the loci, one of the alleles was
fixed in more than 95% of the runs. These alleles can be regarded as favorable within the
context of this parameterization of the genotype to phenotype mapping of the galactose
pathway. In a first approximation, these alleles have a strong additive effect on
performance. However, for the remaining polymorphic loci, the contribution of each
allele to performance is context dependent and it is not possible to classify either of the
alleles as favorable without specifying the context. At the individual level, the context
refers to the alleles present at other loci associated to the trait. At this level, the context-
dependency of allele values results from the non-linearity of the model of molecular
interactions. Context-dependency can also be considered at the population level. The
selective values of the allele at one particular locus depends on the allele frequencies of

all other loci associated to the trait being selected.
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Epistasis is a challenging concept with different meanings in molecular biology and
genetics. At the molecular level, all the genes of the GAL system are engaged in some
form of cis or trans interaction. Epistasis seems prevalent at this level. For geneticists,
epistasis is associated with the limits of the additive model of gene action. If the
complexity of the selection process indicates epistatic effects, it is nonetheless striking
that most genetic gain takes place during the first 50 cycles of selection in our simulation
experiment. This suggests that at the population level the system is initially in a largely
additive state, despite these molecular interactions. However, following cycle 50 the
results of the selection process are much less predictable. This indicates that the initial
cycles of selection predictably fix particular alleles at seven loci. The additive genetic
variation associated with these seven loci is exploited by selection. Following this
additive gain, the population structure is such that the system moves into a state where
there are more context-dependent, non-additive effects exploited by selection. The
consequence is the many possible selection end points by cycle 100. It may thus be
necessary to refine our understanding of the consequences of molecular interactions by,
for instance, relating genetic epistasis to the control properties of the regulatory circuits

1 %2, Further, the results we observe reinforce that views of

of the gene network mode
genetic variation based on the concepts of additive and non-additive (dominance,
epistatic) components of variance for a trait are population specific and are therefore time
dependent in relation to the cycles of selection **. The work presented in this paper paves
the way to a more formal analysis of the genetic properties of molecular networks. In
particular, it is necessary to analyze physiological and statistical genetic effects ***°. The
techniques to analyze genetic interactions between more than two loci raise a number of
theoretical and computational problems that are beyond the scope of this article.

It is an inspirational first step to use models of molecular interactions for gene
networks and their gene-to-phenotype mappings, such as our representation of the
galactose pathway, to consider the complex biological processes involved in the changes

brought about by plant breeding. In turn this provides a demonstration of important issues

that must be considered in the design of molecular plant breeding strategies.
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Appendix

The model of the GAL switch is given in this appendix in a format suitable for use

with the MATLAB functions for numerically integrating differential equations.

Y0 = zeros(l6, 1);
YO(1l) = 0.000000;

YO (2) = 0.000000;
YO(3) = 0.000000;

YO (4) = 0.000000;

YO (5) = 0.000000;
YO(6) = 0.000000;
YO(7) = 0.000000;
YO(8) = 0.000000;

YO (9) = 0.000000;

YO (10) = 0.000000;
YO (11l) = 0.000000;
YO0 (12) = 1.000000;
YO (13) = 0.000000;
YO (14) = 