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Chapter 1. General introduction 

Introduction 
The design and analysis of biomolecular networks is an ambitious goal of synthetic 

biology and genetic engineering1. Both of which may be able to advance by utilizing formal 

methods, such as modeling, developed and relied upon in more mature branches of 

engineering. Modeling of cellular processes is the application of mathematics to molecular 

biology that ideally provides a computational system that accurately describes the phenotype 

of the modeled system in response to changing environments, stimuli, and perturbations. 

Modeling allows initial experiments to be performed in silico2 through simulation3-7, and can 

be used to summarize knowledge or discover and fill in knowledge gaps8. Modeling will 

have a more significant role, verifying expectations and identifying potentially undesirable 

conditions9, as more complicated constructs are considered. 

Until recently, models presented in the literature relied on custom-crafted equations to 

approximate the actual process underlying an observed behavior of the modeled system. 

Regardless of the accuracies of the approximations, this approach creates models that are 

hard to validate or extend, stemming from the difficulty that researchers not trained in math-

ematics have understanding and applying the model10. What has helped modeling to be 

accepted as a routine approach in physical sciences and engineering is the identification of 

“building blocks” that have consistent properties regardless of their application. Progress has 

been made in this direction with the introduction and improvement of biochemical modeling 

environments. However, if an analogue to building blocks exists in molecular biology, in 

which some research suggests at least topologic building blocks exist11, then the application 

of modeling to genetic engineering as a design tool could be made more powerful. 

Background and significance 

Synthetic biology: Molecular biology currently lacks the structure typical of 

engineering; however, several research groups are making progress to develop synthetic 

biology4,12-14. Theoretical approaches suggest that motifs are a common part of all 
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networks15,16, and with experimental evidence suggesting their presence in biological 

networks11, prototype systems are being constructed that demonstrate the analogues of 

building blocks in genetic networks. Examples of engineered regulatory networks to date 

include various bi-stable switches17-20, oscillatory systems mimicking circadian clocks21, and 

Boolean functions22,23, as well as more systematic and exhaustive efforts24. Lessons learned 

from these prototypes are helping to establish design principles9 to enable construction of 

more elaborate systems. The most ambitious groups are already attempting to engineer 

viruses and a complete minimal organism25,26. 

Not all attention has been placed on engineered networks. Other groups have focused on 

the interface mechanisms for communication between cells and engineered and indigenous 

networks27-29. Further driving the field is the need to understand and manipulate the regul-

atory control of metabolic networks30. Resources that are advancing the field include gene 

interaction maps31, protein–protein interaction maps32,33, and large scale protein interact-

ions34-36 surveys across multiple species. 

The difficulties of genetic engineering relate not only to the design of networks but also 

include the effects of the construct on the viability of the organism. This requires knowledge 

of the interactions between other networks in the organism and is presently outside the scope 

of current knowledge for all but the most studied organisms. For now, genetic engineers must 

remain aware of the possible consequences of incomplete knowledge of the target organism. 

Others have taken a network theoretical approach, exploring through simulation the required 

properties of a network to exhibit a particular phenotype20,37-39. For the purpose of this 

research the networks considered will be restricted to those with associated experimental data 

either based on laboratory experiments or generated through simulation. 

Synthetic biology – The experiment of Guet: Published network diagrams make the 

modeling of regulatory networks look deceptively simple. In practice, most regulation 

mechanisms are simply not understood well enough to accurately model an arbitrary 

network, a consequence of having limited observations of complex interactions between 

arbitrary elements in an incompletely understood network. Guet sought to better understand 

regulation by removing several of these unknowns through constructing a library of artificial 

gene networks24 containing all possible topologies between three of the best-understood 
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transcription factors. This exhaustive genetic engineering approach provides several new 

observations, providing data for new insight into regulation and demonstrating the diversity 

of phenotypes possible with just a small number of regulatory elements. Beyond being an 

example of successful genetic engineering, the results of this set of experiments provide the 

data that form the basis of a validation set for this work. 

Modeling formalisms: A modeling formalism is the language in which a network model 

is described. It consists of two main components: the presentation and the mechanics12,40. 

The formalism’s presentation may consist of raw equations, textual descriptions, or graphical 

descriptions. The choice of presentation affects the ease in which a model can be described 

and the chance of ambiguities existing in the model. While presentation is limited by the 

underlying mechanics, there is no reason that a particular presentation should be any more 

constraining than the mechanics. 

The formalism’s mechanics concern how a model is actually simulated, such as Boolean, 

linear, non-linear, or agent-based41 methods. The choice of mechanics can limit the 

explanatory power of the formalism. For instance, linear methods are easier to analyze and 

optimize, but they are limited in their abilities to capture certain dynamics or they violate 

physical laws such as mass conservation. Likewise, other methods such as stochastic ones 

may be more realistic42-44, but they are prohibitively slow to use in general. However, it must 

be considered if such dynamics are required for the particular model. A balance must be 

formed between generality, performance, and mathematical convenience. 

Modeling environments: The modeling environment is an implementation of a 

particular formalism that allows the researcher to capture the essence of how a network is 

believed to function. Through simulation and comparison to observations, it is possible to 

verify if the model is capturing the observed dynamics.  

Modeling packages may be generic or specialized for modeling biochemical networks. 

Examples of generic packages that have been used include MATLAB, Mathematica, Mobius, 

and Excel45. Since a generic package is not directly designed to accommodate the simulation 

of network models, either an awkward interface must be used to describe the network or 

considerable custom code must be written, both of which can be error-prone. 
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Specialized packages have been released with greater frequency in the past few years to 

accommodate the expected needs of systems biology46,47. One of the original packages, 

Gepasi48,49, is still one of the most popular. Others include E-Cell50 for simulation of entire 

cells, Biospice, and Gene Network Analyzer, and COPASI, which is inspired by Gepasi. 

Perhaps the most elaborate system is the Systems Biology Workbench (SBW), which con-

sists of a number of tools that operate together, including Jarnac as the computation engine 

and JDesigner as the graphical network design tool. Most specialized packages are 

standardizing on a common file exchange format called SBML51, which helps to leverage the 

complementary features of each package. Although some packages have a rudimentary 

model-fitting mode, they are not suitable, in general, for complex networks52. 

Through improvement of the theoretical properties of regulatory networks and 

sophistication of the modeling environments, future tools may become the molecular biology 

analogue to the computer-aided design software packages currently used by engineers.  

Model fitting: The process of model fitting is the assignment of kinetic parameters to the 

model so that the model is correctly able to predict the response to stimuli of the modeled 

system. If an evaluation function is available to measure the fit of the model to experimental 

observations, the process can be viewed as an optimization process. Although much research 

has been applied to optimization of metabolic networks52-54, model fitting of regulatory 

networks is less refined45,55,56. One reason for this dichotomy is because metabolic networks 

are composed of largely static chemical reactions, while regulatory networks are more 

transitive by their nature. A problem that is constantly faced when analyzing data from 

regulatory networks is that the most easily available data, such as expression chips, can be 

misleading57,58. 

The choice of formalism has an effect on the ease of model fitting. A nonlinear 

formalism, such as one based on differential equations, will naturally be more difficult to 

optimize than one based on linear approximation such as s-systems. But ease of optimization 

alone is not enough to force a selection of modeling formalism. 

Evolution of regulatory networks: Evolution produces apparently complex systems 

from supposedly random mutations guided by selection pressure. Computer scientists, 
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inspired by evolution, created the field of evolutionary computation that uses the same 

principles thought to be at work in evolution. Nature has been very successful, more than 

engineers, in constructing robust systems in noisy environments through evolution. It is 

therefore only natural to apply the concepts of evolutionary computation to the problem of 

regulatory network modeling. 

Evolution of regulatory networks differs from model fitting primarily in the degrees of 

freedom available. Model fitting primarily considers alterations of the model parameters 

alone with no impact on the model topology. In the evolutionary approach, the topology of 

the network is able to change as well as the parameters. Akin to network reverse 

engineering59,60 in its goal, evolutionary methods do not rely on statistical inference. 

Dissertation organization and accomplishments 
This dissertation is divided into eight chapters representing progressive steps toward the 

goal of evolving models of biochemical networks that exhibit a phenotype of interest. The 

current chapter serves as introduction to the area of biochemical network modeling, with a 

brief literature review, and with in-depth review of relevant literature reserved to subsequent 

chapters. 

Chapter 2 introduces the basis of the modeling formalism that will be used throughout 

this dissertation. This chapter was originally an invited paper40 for PNPM 2003 (the 10th 

International Workshop on Petri Nets and Performance Models) held at the University of 

Illinois at Urbana-Champaign. The workshop audience included applied mathematicians and 

computer scientists specializing in modeling the performance of computer networks and 

architectures. 

Having defined the mathematic formalism that will be used for our models, in Chapter 3 

we develop a user-friendly modeling environment that serves as the environment in which 

our models are built, evaluated, and compared. We pursued this development instead of using 

available packages in order to maintain tight control over the environment, to ensure 

extensibility for our research, and to learn the details of the involved methods through 

implementation. Alternatives are either restricted to binary-only distributions, are based on 

unfamiliar languages, have unreasonable license agreements, or have inadequate 
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performance. This software, referred to as PNE, has been released into the public domain 

under the GNU General Public License for anyone to use and modify. 

Chapter 4 was originally published in the 2005 proceedings of the Pacific Symposium on 

Biocomputing and introduced a method of finding solutions to the equations of our models. 

Subsequently we present better methods, but Chapter 4 represents an important step. 

Chapter 5 consists of a paper originally published in Genetics61 in which our modeling 

environment is used to develop a model of the yeast galactose pathway. We subject this 

pathway to genetic selection similar to methods used in breeding simulations, enabling us to 

observe the dynamics of populations under selection. This is the first chapter in which we 

actually see the simulation of a real biochemical network. 

 In Chapter 6 a model-fitting environment is presented that attempts to fit a model to a set 

of experimental data by exploring values of free parameters that may include kinetic rates as 

well as the model topology. Ideally, measured values for all kinetic parameters would be 

available, but such availability is rare. Still rarer is complete understanding of the topology. 

A hybrid search strategy comprising a stochastic optimization method (genetic algorithm) 

and a local optimization method (simplex) is successfully used despite the presence of 

nonlinear dynamics. If given sufficient freedom, the system can be used to evolve new 

models as is demonstrated by identifying alternative genetic toggle-switch models. There is 

also discussion of how one can quickly estimate network similarity using graph theoretical 

algorithms to identify unique networks from the solution sets. 

Chapter 7 presents the Guet network library. We first model these networks in PNE using 

our understanding of the regulatory elements involved. Then we apply the tool developed in 

Chapter 6 to these networks to try to find valid parameters. If building blocks can be 

identified that have consistent parameters in different networks, then it should be possible to 

construct, using these building blocks, models of new, yet unconsidered, regulatory 

networks. If such independence does not exist, it would suggest a nontrivial interaction 

within or between the regulatory motifs that is not currently part of the theory of regulation. 

Finally, in the last chapter, Chapter 8, we conclude the main part of the dissertation by 

considering the preceding chapters retrospectively, summarizing what has been accomplished 

and suggesting directions of research that would advance this field. 
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Following the conclusions are two appendices. In Appendix A is an example of how the 

modeling environment that we have created can be applied to other domains. PNE is 

modified to target Petri Networks and several examples are described. There is considerable 

work supporting Petri Network theory and they have been applied to modeling regulatory 

networks. 

Appendix B contains optimized models each of the Guet networks. Some match the 

experimental data while others do not. In some cases, comments have been added describing 

unusual properties of the particular network. 
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Chapter 2. Modeling networks of molecular interactions 

in the living cell 

 

A modified version of an invited article published in The Proceedings of the 10th 

International Workshop on Petri Nets and Performance Models (PNPM 2003), University of 

Illinois, Urbana, Illinois, USA, September 2-5, 2003 

  

Kent A. Vander Velden1 and Jean Peccoud1 
1Pioneer Hi-Bred International, Inc., DuPont Agriculture & Nutrition, 7200 NW 62nd 

Avenue, Johnston, IA 50131, USA 

Abstract 
Interactions occurring in living cells between populations of macromolecules are now 

sufficiently understood to model them with some level of realism. Here, the structures and 

dynamics of these models are reviewed, and a number of open problems are discussed. 

Recent applications of such models indicate that there is a growing need for simulation 

environments specifically designed for the life sciences. 

Introduction 
Fifty years ago, biology became molecular with the publication of the crystallographic 

structure of the DNA molecule 1. Since then, life scientists geared their efforts and resources 

to the characterization of the molecules involved in the biochemical processes supporting 

every aspects of the physiology of all sorts of living organisms spanning a wide range of 

organizational complexity. The molecular mechanisms of life turned out to be very similar in 

viruses, bacteria, plants, and animals, making their systematic dissection a very appealing 

proposition. 

If the project is still far from completion, it is already possible to get a global perspective 

on the network of chemical reactions taking place in a number of model organisms. The 

recent development of databases with the ambition to record systematically and consistently 
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all the reactions described in these organisms is probably the best indicator of the 

advancement of this scientific project 2-4. Some of these databases are publicly available on 

the Internet, making it easy for a large and diverse community of scientists to access these 

data and keep abreast of their developments.  

Networks of molecular interactions will be referred to as “molecular networks” in this 

document. They form the communication and control systems of living cells. Starting with 

individual networks that control fine grain components of the cell, such as uptake and 

conversion of molecules, exchanges between networks control more visible responses. 

Interactions of genes and proteins, through a variety of regulation mechanisms, comprise 

molecular networks and are the mechanisms for responses made to environmental signals and 

perturbations. Our research into the arena of molecular networks has touched on several areas 

necessary for realistic modeling, simulation, and analysis. Here we briefly present an 

overview of this research and the computational challenges it raises. 

Structure 
Biologists often support textual descriptions of interactions between molecules with 

pieces of artwork intended to illustrate the main features of the system dynamics. 

Unfortunately, the representation of molecular networks has not been standardized, making 

most figures found in the biological literature ambiguous and thus unsuitable for 

implementation in software. However, chemists have been using standard notations that can 

be adapted to meet the specific requirements of the life sciences.  

Chemical equations  

Molecular networks can be represented in a unambiguous way as sets of coupled 

chemical reactions using chemical equations.  

In Equation (2.1) for instance, the first line represents the inactivation of the gene gal4g 

by glucose noted Glu. The second reaction represents the expression of the gene, i.e. the 

production of one protein molecule by the DNA molecule coding for this protein. The last 

reaction represents the spontaneous degradation of the protein. 
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               (2.1) 

1

2

3

4

k

k

k

k

gal4g + Glu  gal4gX

gal4g  gal4g + Gal4p

Gal4p







This type of notation naturally leads to a matrix representation of molecular networks. 

The general form of a chemical equation is: 

        , ,
1 1

1, 2,
M M

m r m m r m
m m

X X r R 
 

        (2.2) 

Equation (2.2) is completely determined by the two MxR matrices  and  called the 

reactant and product matrices respectively, and a vector X representing each of the M 

molecule species in the system. Data structures used to manipulate molecular networks in 

software are usually derived from these two matrices. The difference  is often referred to 

as the stoichiometric matrix. 

There is a significant specificity in the way these equations are used in the context of 

biological molecular networks. Classically in chemistry, chemical equations need to preserve 

the mass and numbers of atoms. This constraint is known as the law of atomic balance. In 

biology, accounting for all atoms present in the system is not possible due to the size of the 

molecules involved. Chemical equations are thus used as a meta-language. Reactions 

expressing creation or removal of molecules from the system are permitted and necessary. 

Molecular networks define atom-free stoichiometries 5. 

Diagrammatic representation 

Vol’pert diagrams are graphical representations of sets of chemical equations (Figure 

2.1). They offer a global perspective on the model that helps to understand the architecture of 

the network. It is often much easier to build a model of medium-sized systems using these 

diagrams.  

Vol’pert diagrams are flat representations of molecular networks. This becomes limiting 

when the number of reactions in a network exceeds 100 or so. Beyond this limit, it becomes 

necessary to refine the graphical representation of the networks. Two approaches have been 

explored to address this problem: 
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 Hierarchies of diagrams can be defined so that a complex model can be broken 

down into several manageable sub-networks. 

 A number of reaction mechanisms that are found in virtually all molecular 

networks have been characterized. They include mechanisms of enzyme-

catalyzed reactions, mechanisms of gene activation or gene repression, etc. It is 

possible to simplify the diagrammatic representation of molecular networks by 

introducing new graphical objects corresponding to these canonic mechanisms.  

It is naturally possible to combine both solutions. A more difficult problem is the 

problem raised by the high dimensions of the state-spaces generated by certain molecules. 

Many genes have multiple binding sites for proteins regulating their expression. Some 

proteins have several modification sites to which a phosphate group can be attached. For 

instance the tumor suppressor protein p53 has at least 12 different modification sites. It can 

thus exist in 212 different states. Finding a way of representing all these state variables in a 

concise way remains an open problem.  

 
Figure 2.1. Vol'pert diagram of a molecular network 
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Dynamics 
The analysis of the dynamics of chemical systems usually relies on differential equations. 

In the case of biological systems where the number of interacting molecules is small, it is 

more realistic to use stochastic models of molecular interactions. However, the 

computational cost of solving these models when their state space is large makes it necessary 

to develop approximation solutions.  

Differential equations 

The mass action rate law is commonly used to describe the kinetics of chemical reactions. 

The law states that the rate of a reaction is proportional to the concentration of its reactants. 

The generic form of a reaction rate is provided in Equation (2.3).  

                  (2.3)   ,

1

i r
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r r i
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v k X




 

The rate of reaction r is the product of its reactant concentrations. If two molecules of 

the same type interact in a reaction, their concentration should appear twice. It is very 

convenient to use the reactant matrix as exponents to express these rates in a generic way. 

Last, the reaction rate depends on reaction specific kinetic rate constant. It is worth noting 

that the dimension of this constant depends on the order of the reaction, i.e. ,
1

M

i r
i



 . 

From there it is possible to derive a set of ordinary differential equations (ODEs) 

describing the time-evolution of all the state variables. The net time evolution of a molecule 

concentration is the difference between the rates of all the reactions producing this molecule 

and the rates of all the reactions consuming the molecule. Since a single reaction event can 

consume or produce more than one copy of a molecule, the rates need to be adjusted by the 

stoichiometric coefficients. 
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ODEs provide a reasonable approximation of the dynamics of populations of molecules 

at the thermodynamic limit when the sizes of all populations of molecules are large. 

Stochastic process 

When modeling at the level of gene regulation, where genes are typically in single copy 

numbers, ODE solutions may represent a very poor approximation of the system dynamics. 

This observation was formulated in the early 1940s. Max Delbruck probably was the first 

author to address this question from a mathematical perspective 6. Soon afterwards, Erwin 

Schrödinger commented on the expected fluctuations of the interactions between small 

populations of macromolecules confined to the small volume of the living cell 7.  

This problem has been addressed from a theoretical perspective by physicists and 

chemists during the two following decades 8-11. Their results specified the Markov process 

equivalent to the system of ODEs traditionally used in chemical kinetics. The intensity of the 

process is sum of the marginal intensities of the reactions. The marginal intensity of a 

reaction is the stochastic equivalent of the deterministic reaction rate. It specifies the average 

number of occurrences of a reaction by unit of time. Its structure is comparable to the 

deterministic reaction rate with a few modifications. As mentioned earlier, the dimension of 

the deterministic rate constant depends on the order of the reaction. Since the stochastic 

intensity is based on actual molecule numbers and not molecule concentrations, it is 

necessary to remove the volume from the kinetic constant. The modification of second term 

has to do with the probability of two molecules to interact. In any reaction where one 

molecule of each population interacts with molecules of another population, the term is 

analogous to the expression of the reaction rates corrected for the volume. If two molecules 

of the same population interact, then it is slightly different. A great deal of attention was 

brought to justify these terms in the early articles on stochastic models of the chemical 

reaction. 

       

   

   

,
1

1 1 ,

!

!
M

i r
i

M
ir

r
i i i r

r
r

Xk
X

X
V

X X






 



 









       (2.5) 

 



18 

The dynamics can be represented by a pure jump process defined by two random 

variables. The instant of the next jump is exponentially distributed. The next reaction, 

destination of the next jump, is also randomly distributed. The probability of each reaction 

depends on the weight of its intensity relative to the sum of the intensities of all reactions.  
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Donald Gillespie derived from the mathematical definition of the process, a computer 

algorithm to perform exact simulations of this process 12,13. A more effective version of this 

algorithm has been published recently 14. These methods give excellent results when the 

mean time between jumps does not tend to infinitesimal values. When the system becomes 

stiff because the rate constant of one reaction is several orders of magnitude larger than the 

rate of the slowest reaction or because one population of molecules is several orders of 

magnitude larger than the smallest population, the computing cost of this approach becomes 

prohibitively expensive. This limitation is currently driving a very active field of research 

aiming at finding fast and dependable approximations of this stochastic dynamics. 

Approximations 

It may seem natural that the stable steady-states of the ODE be associated with the modes 

of the stationary distribution of the corresponding stochastic process. However, in general 

there is no one-to-one correspondence between equilibrium points and extrema of stationary 

distributions 5. Similarly, the mean values of the variables of the stochastic process do not 

match the trajectories of the ODEs 15 even though the differences may be negligible. Hence a 

practical, but not very rigorous, approach is to use ODEs while building a model and switch 

to stochastic simulation after the dynamics appear correct. This allows one to focus on 

building a network initially and then explore the effects of stochastic noise later. 

To address the need for stochastic simulation, but also the conflicting need for simulation 

speed, stochastic approximation methods are being developed. In particular, it has been 

demonstrated that under some conditions, the number of jumps occurring during a small time 

step can be approximated by a Poisson distribution 16. 
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Another approach would be to develop a hybrid model by partitioning the state-space into 

three categories of variables whose dynamics would be represented by a pure jump process, a 

diffusion process, and differential equations. This would lead to a generalized Markov 

process as it is defined by Gardiner 17. This approach would require some a priori knowledge 

of the size of the populations of molecules corresponding to each dimension of the state 

space. Since this information is usually not available before the model is simulated, it is 

necessary to start by assuming that all variables jump between discrete values and find a way 

of approximating the time-evolution of each variable as we go. It is likely that different types 

of problems will require different types of approximations.  

Software 

Upon starting this project, a survey of the software tools available was conducted. 

Several applications have been developed to help biologists analyze the emerging properties 

of molecular networks. Some applications like Gepasi18,19 or Scamp/Jarnac20 rely on a textual 

specification of the models close to the notation used in chemical equations. This approach 

quickly becomes impractical when the number of reactions grows beyond 20 to 30 reactions.  

A diagrammatic representation of the networks makes it much easier to capture the logic 

of larger networks. This observation was the rationale for the development of JDesigner, an 

add-on for Jarnac providing a network view of the models. Similarly, Pedro Mendes, who 

developed and maintains Gepasi, is currently working on the development of Copasi, which 

will also include a diagrammatic representation of the models.  

The correspondence between molecular networks and stochastic Petri nets has been 

established 21. This made it possible to use software originally designed to analyze the 

performability of computer architectures such as UltraSAN or Mobius 22, to solve the 

stochastic dynamics of molecular networks. 

Simulation solutions are also already available from various vendors and more are 

expected in a near future. For instance, Princeton (NJ) based Physiome Sciences, Inc sells a 

software package named PathwayPrism™ with features somewhat similar to the Jarnac and 

JDesigner combination. A few prominent companies operating in the technical and scientific 

computing market are also working on the development of similar simulation platforms.  
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While several systems were available, none met all of our needs in terms of user 

interface, representations of models, and capability to switch between differential, stochastic, 

and hybrid dynamics. This lack of desired flexibility resulted in the decision to develop in 

house our proprietary modeling environment. 

In this environment molecular networks are constructed using a graphical language and 

internally converted to a series of chemical reactions based on mass action reactions. Most 

simulation packages in the life sciences implement various types of rate laws commonly 

found in biological systems 23. These specialized kinetics are approximations of the kinetics 

of common reaction mechanisms. They can thus to be modeled by the mass action rate law 

without the need for introducing specialized rate laws. This approach is entails a small 

computation penalty but is safer since it does not rely on any assumption ensuring the 

validity of the approximation. It also provides the freedom to explore alternative simulation 

and analysis techniques. 

Applications 
Building models of molecular networks is a way to distinguish aspects of a biological 

system that are well documented from those that need to be hypothesized. In some cases, the 

properties of models can be used to evaluate the biological realisms of the assumptions upon 

which the model was built. Recently, genetic constructs exhibiting complex dynamics have 

been engineered based on a prior analysis of molecular networks models. 

Knowledge capture 

While the ultimate goal of molecular network modeling might be a means to understand 

the dynamics of the network, there are intermediate rewards. Identification of weaknesses in 

one’s understanding of the network is one such reward. Questions are raised as soon as one 

starts to build a model, and become more complicated as one begins to fill in all the 

parameters needed for simulation. Frequently, the modeler needs to research or hypothesize 

stoichiometric coefficients, reaction and degradation rates, cooperative binding, formation of 

complexes etc. Modeling molecular networks is a way to capture the knowledge of biologists 

and to formulate working hypotheses. 
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Discovery 

The modeling of molecular networks starts with the identification and placing into the 

modeling environment interactions between genes, proteins, and possible environmental 

factors. During the process of network construction, rate constants must be identified for 

each reaction. The rate constants describe the relative speed of each reaction and are equally 

important for simulation as the interactions. While interactions are often accessible from the 

literature, rate constants are rarely documented and are generally inaccessible through 

experiment. Fortunately, robustness seems to be a very common property of biological 

networks. Several networks are pretty insensitive to parameter values 24-27. This property 

tends to be used as a criterion to assess the biological realism of a model. A model exhibiting 

a strong robustness indicates that the assumptions used to build it are to be favored. This 

indication can lead to the design of experiments aiming at the verification of these underlying 

hypotheses.  

Stochastic modeling of molecular networks recently drove a series of experiments aiming 

at the experimental observation of molecular noise at the single cell level 28-30. Our 

understanding of molecular interactions, in light of these living cells, is being revisited in the 

light shed by these new developments. Control mechanisms seem to be able to leverage 

molecular noise 31,32, and therefore the stability of molecular clocks to molecular noise is 

being investigated 33. Cellular differentiation is analyzed as a first-exit problem 34,35. 

Engineering 

Models of molecular networks have driven the design of new genetic constructs 

exhibiting complex dynamics. In 2000, Elowitz designed the Repressilator, a construct 

consisting of three genes repressing each other and leading to the oscillating expression of a 

fluorescent protein 36. The same year, Gardner designed a bi-stable construct called a toggle 

switch by combining two genes repressing each other 37. Since then, a number of other 

constructs have been described (see 38,39 for recent reviews).  

Even if practical applications of this new generation of constructs remain to be identified, 

they can already be regarded as a turning point in the history of biology. They clearly 

demonstrate that we already know enough about interactions between molecules in the living 
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cell to model them with some level of realism. The minimal artificial networks that have 

been engineered so far can be compared to simple electrical circuits consisting of a few 

resistors, capacitors, and transistors, but it is likely that much more complicated constructs 

will be engineered in a near future.  

Conclusion 
This analogy between molecular networks and electrical circuits leads a number of 

scientists to believe that there will soon be a need for CAD applications to design genetic 

constructs. This trend is probably best illustrated by the University of California, Berkeley, 

which hosted the development of the SPICE circuit simulator and is now supporting the 

development of the BioSPICE project. This field of research is rich in opportunities for 

modelers, computer scientists, software engineers, and electrical engineers wishing to ride 

wave of a systems approach of molecular biology. 
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Abstract 
Motivation: The model-driven design of artificial gene networks requires a computa-

tional environment that adapts to this emerging domain concepts and methods used in other 

fields of engineering. Traditional gene network simulation software applications do not 

enable a hierarchical definition of models, the reuse of previously defined models in larger 

models, or the definition of generic performance metrics.  

Results: GenoDYN provides an environment for analyzing artificial gene networks. 

GenoDYN supports the construction of network models using intuitive graphical 

representations of molecules, reactions, and network motifs, with additional controls for 

modeling external inputs. GenoDYN also supports analysis of the dynamics of the network 

model using continuous or stochastic simulation and built-in visualization tools such as line 

and phase plane plots, or time series of statistical distributions. GenoDYN includes a 

distributed computing framework for computationally demanding stochastic simulations. 

GenoDYN also provides built-in performance evaluation functions as well as user-specified 

evaluation functions written in a built-in scripting language. 
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Introduction 
Model-driven design of artificial synthetic genetic systems meeting user-defined 

specifications is the ultimate vision of synthetic biology 1-9. The development of the first 

artificial gene networks relied on a qualitative analysis of the dynamics of small systems of 

differential equations 10-12, but this method does not scale up beyond these few proof-of-

concept results. Numerical simulations coupled with the automatic exploration of the design 

space 13-17 seems to be an interesting alternative to identifying robust designs capable of 

exhibiting desirable phenotypes, but this promising approach has been explored with 

software prototypes that lack mature modeling capabilities. 

A modeling platform, used in engineering projects, should support the development of an 

abstraction hierarchy allowing users to analyze model properties at different levels of 

organization 18 by taking advantage of the modularity of artificial genetic systems 19, 20. In 

addition, the modeling framework should be capable of expressing the artificial genetic 

system inputs as interactions with their physical or biological environment 21. Being able to 

define arbitrary functions of the models’ states to express the design performance is essential 

to evaluate designs. In addition to streamlining the modeling definition process, the modeling 

platform should be integrated with tools to explore the design space by optimizing parameter 

values or even the model structure. GenoDYN was developed with these requirements in 

mind. It supports a hierarchical definition of models that encourages reuse of previously 

defined models. It supports multiple simulation engines that are well integrated with 

sophisticated visualization capabilities to enable fast model development iterations. In 

situations where the computing cost of simulations exceeds the capability of the workstations 

used to run the client applications, users have the possibility to seamlessly execute their 

simulations on a dedicated cluster. Evaluating model performance is possible by using built-

in generic functions or model-specific functions developed in a custom scripting system. 

Finally, the GenoDYN platform includes higher level applications that can be used for 

exploration of the design space.  

GenoDYN joins a growing list of software environments used in systems biology for 

modeling biological networks 22-25. Inevitably, some of the capabilities of GenoDYN overlap 
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those of others. A recent review of available packages 26 can help prospective users identify 

the software solution most suitable for a particular research project.  

This report focuses on GenoDYN’s most specific features. Its organization reflects the 

modeling workflow by first describing model editing functions. Model simulation and 

evaluation are described in the following sections. Model evolution tools are briefly covered 

before discussing some of the limitations of this platform and its possible future 

developments. 

Model definition 

Basic editing 
GenoDYN presents a canvas view for modeling biochemical networks. Directed edges 

between molecules and reactions model product and reactant relationships. Context-sensitive 

menus provide a palette of network entities such as a molecules and reactions. Different 

categories of molecules are available (e.g. DNA, RNA, proteins, metabolites, complexes) but 

the difference between them is limited to their graphical representation. Numerically all 

molecules are equivalent. Similarly, GenoDYN reactions are restricted to only mass-action 

kinetics. This choice simplifies the design of the simulation engine and makes the model 

interactions explicit and valid in all conditions, unlike specialized reaction kinetics that are 

valid only under certain assumptions 27. 

Sections of a model can be selected, cut, and pasted. Because model entities must have 

unique names, when a new model section is introduced by a paste operation, molecule and 

reaction names of the new section in conflict with existing names will be suffixed with a 

random four-letter string. 

The Edit menu includes additional features that help refine the visual representation of 

GenoDYN models such as randomized placement, snap to grid, and dynamic layout based on 

a ball-spring physics simulation. 

Multiple concurrent canvases allow one to work on multiple models simultaneously and 

copy and paste sections between models. Models are stored as XML documents that can be 

converted to SBML 28 using a transformation language such as XSLT. 
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Environment specification 
When modeling a biological system, it is often desirable to evaluate how it reacts to 

variations of the physical environment. Examples of such variations are circadian oscillations 

of light, temperature, nutrient availability, and changes of the growth medium such as the 

addition of gene expression inducers. The physical environment can be represented by 

variables that affect the dynamics of the model but are not affected themselves by the time 

evolution of the model’s variables. In GenoDYN, control variables are model entities that 

can impose a boundary condition on the model dynamics.  

Two different types of control variables are available: square wave and interpolated. 

Square wave control variables have six parameters, making it possible to represent various 

transitions between two different states including periodic oscillations and impulse functions. 

Despite the flexibility of the square wave control variables, in some cases it is necessary to 

introduce control variables with a very specific dynamics. This would be the case when 

analyzing the network response to a set of experimental perturbations recorded in a reactor. 

In these cases it is possible to introduce in the model an interpolated control variable whose 

dynamics will be specified by importing a text file containing time series values.  

GenoDYN calls “environment” a set of parameterizations of the model control variables. 

After the number of environments defined on the model has been specified in the 

Simulation>Environment>Edit menu, the dynamics of each control variable can 

be specified by successively selecting each environment in the drop list of the control 

variable definition dialogue.  

Hierarchical modeling 
GenoDYN supports a hierarchical approach to the definition of complex models by 

allowing the reuse of existing models as sub-networks of more complex models. Any 

molecule of a model can be exported by checking the corresponding box in the molecule 

definition dialogue. This exposes the molecule in the sub-network object, allowing it to be 

connected to other entities in the calling model (Figure 3.1). Subnetworks can be edited or 

defined directly into the larger models. Alternatively, a subnetwork can be imported directly 

from an existing model file. Modifications of the original subnetwork file are not propagated 
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to the models using that file as subnetworks. This feature enables a structured approach to 

model development. Complex models can be broken down into more manageable 

components that can be analyzed individually before integration in larger models. The 

structure of large models becomes more apparent as the entire model can be represented by 

various subnetworks corresponding to pathways or components of the global network.  

 
Figure 3.1. Hierarchical model using subnetworks. The model A contains two references to the sub-

model B. Model A includes two parallel pathways from S to P2 and from S’ to P2’. Each pathway is 

composed of two Michaelis-Menten mechanisms. In the S to P2 pathway, all the molecular steps are 

visible whereas the use of the two subnetworks SN1 and SN2 makes it possible to represent the same 

molecular network in a more abstract and compact format in the S’ to P2’ pathway. The three variables 

E, S, and P of model B accessible to models at the next level in hierarchy are indicated by a thick black 

contour.  

In addition, it is possible to build a library of subnetworks corresponding to common 

molecular mechanisms or network motifs. Models in a common shared directory can be 

directly inserted into a model using the library item of the context-sensitive menu. 

Reporting 
Models can be documented and exported using different methods. The model diagram 

can be copied and pasted into other applications (Edit>Copy to clipboard). 

Similarly, the diagram can be saved in SVG and PNG files. A comprehensive report can be 
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generated and saved in a text file (Pathway>View Report). The model can be exported 

in different formats to be analyzed in other tools. 

Simulation 

ODE and stochastic simulation 
Chemical kinetics has traditionally relied on Ordinary Differential Equations (ODEs) to 

describe the time evolution of molecule concentrations 29. However, concentrations are the 

limit of the mean number of molecules per unit of volume when this number tends to infinity. 

When a model includes small populations of molecules, its dynamics is better described by a 

Markovian jump process with a discrete state space 30, 31. This situation is frequently 

encountered in the modeling of gene regulatory networks where only a few copies of 

molecules like genes, mRNA, or even some transcription factors are present in living cells.  

Hence, GenoDYN provides two modes for simulation: continuous, using CVODE 32 to 

solve ordinary differential equations (ODEs), and stochastic, using Gillespie’s direct method 
33. Users can switch between the representations that are mathematically equivalent 34. A 

typical modeling workflow starts by simulating the ODEs as a means to quickly view the 

system dynamics. The Simulation>Options dialogue box allows users to specify the 

simulation time frame and the sampling period used to collect data for visualization. The 

ODE solvers options allow users to let the solver find the steady state of the model and set 

integration parameters that can be used to fine tune the numerical integration.  

In models with large numbers of molecules such as metabolic pathways, it may not be 

necessary to use another solver. However, for models involving small populations of 

molecules such as models including gene expression mechanisms, the model analysis will 

involve running the stochastic simulator. Stochastic simulation is valid for any number of 

molecules, but its computation time grows rapidly with the number of molecules and the rate 

of the fastest reactions. The parameters of the stochastic simulator are limited to the number 

of trajectories simulated and the update rate of the simulation visualization. For stiff systems 

having reactions occurring at very different rates, stochastic simulations may require 

significant computation time 35-37. Simulations can always be aborted by pressing the Esc 

key. 
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Visualization 
Simulation results are collected by sampling the concentration of each molecule at 

regular intervals. The sampling period affects the memory GenoDYN requires by controlling 

the number of data points recorded during the simulation. Oversampling simulations could 

result in a decrease of performance or excess memory consumption.  

 
Figure 3.2. Visualization of the solution of an ODE model of a molecular network of the 

Repressilator. GenoDYN can either plot (A) the time evolution of individual variables or (B) the phase 

portrait representing the evolution of a variable as a function of another state variable.  

For continuous simulations and stochastic simulations of individual trajectories, users can 

display the results as plots of concentration versus time, or as plots of one variable versus 

another in the phase plane view (Figure 3.2). Right clicking on any of the plots reveals a 

menu that allows users many options to customize the trajectory visualization. 

Results from stochastic simulations consisting of ensembles of multiple trajectories are 

summarized using a series of concentration distributions over time (Figure 3.3). The resulting 

concentration distributions are represented as colored intensity plots representing the 

distribution histogram at each sampling time (Figure 3.3). The number of bins used to make 

the histograms can be manually set. In addition, it is possible to independently toggle the 
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display of the distribution and its mean. These plots provide an avenue to quickly visualize 

the noise and stability of a network. 

Finally, data from the plots can be exported to a text file for further analysis in a different 

environment.  

 
Figure 3.3. Visualization of the dynamics of stochastic models. (A) represents a single trajectory of 

the Repressilator by superimposing on a single plot the evolution of the number of proteins coded by the 

three genes in the network. Plot (B) represents the evolution of the statistical distribution of one of the 

protein levels estimated from the simulation of 1,000 trajectories. The solid line represents the mean 

value of these distributions. Because these trajectories are not synchronized, the distributions do not 

oscillate even though individual trajectories do.  

Distributed simulation 
Stochastic models give a more comprehensive insight into the dynamics of a molecular 

network but this benefit comes at a significant computational cost, since estimating the 

dynamics of the state variable statistical distributions requires the simulation of numerous 

trajectories. This can rapidly lead to significant computation times. Because of the trajectory 

independence of the Gillespie algorithm, it is possible to achieve a linear speedup by 

distributing the simulations over multiple processors. 

Many computational biologists who could benefit from using a distributed computing 

environment for stochastic modeling of molecular networks do not have easy access to a 

computer cluster or do not have the skills to work in such environment. To eliminate this 

barrier to entry into distributed computing, GenoDYN running on a personal computer can be 
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used as a front-end to a cluster or a grid. In the simulation options dialogue, one can specify 

the IP address of a remote computer where a calculation server runs in task supervisor mode. 

This calculation server receives the specification of a simulation, essentially a serialized form 

of the model file, from clients running on user desktops. Once set up, GenoDYN running on 

one’s desktop computer sends a model to a centralized task supervisor, which in turn passes 

the model to idle calculation workers. The calculation supervisor collects results from the 

workers and returns them to the corresponding GenoDYN client. Multiple GenoDYN 

instances can be connected to a given calculation supervisor at once, with a dynamic pool of 

calculation workers residing within a cluster or an ad hoc distributed computing environment 

such as a pool of workstations (Figure 3.4).  

 

 
Figure 3.4. Distributed computing architecture 

The calculation supervisor and the calculation worker use the same binary, which is 

independent of the GenoDYN client. The invocation of this binary determines which mode is 

used. The workers must be given the IP address of the supervisor and the GenoDYN client 

must be given the IP address of the supervisor. The supervisor does not need to be informed 

a priori of clients or workers. Both clients and workers are free to come and go and their IP 

addresses are discovered upon initial connection with the supervisor. As long as there is at 

least one worker, progress will always be made. One potential deployment strategy is to run 

workers with low priority on many desktop computers in a department or on a cluster. When 

there are available resources they can be utilized by those running GenoDYN. The supervisor 
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and workers require no local access other than to write to an optional log, and can run 

without local permissions, thus improving security. Currently the supervisor and worker are 

only available on Linux, but this does not restrict the architecture of the GenoDYN client. 

Windows-based GenoDYN clients can connect to Linux-based supervisors. 

To illustrate the potential benefit of this architecture we have dedicated a small cluster to 

GenoDYN. Any GenoDYN user can use the software remote simulation feature by pointing 

its client toward xnode1.vbi.vt.edu in the Remote CPU option of the 

Simulation>Options menu. This feature does not require a login account or any other 

special privileges. Note, however, that this experimental resource is currently limited to a 

small number of nodes and would not be able to support large simulation projects. 

Model evaluation 

Fitness function 
GenoDYN supports the definition of fitness functions which are performance variables 

defined to evaluate a model. Two evaluation functions are built into GenoDYN: generic and 

scripted. The generic fitness function allows the definition of target values for any number of 

variables and different environments. The target values are entered using the 

Optimization>Fitness function>Options dialog box. Selecting the Generic 

fitness function activates the Generic Fitness Function Parameters table. A variable is first 

selected along with the target values for each environment defined for the model.  

The fitness value of the generic fitness function is computed as the Euclidean distance 

between the target and simulated values of the selected variables at the last time point of the 

simulation and in each environment. The fitness value is shown in the status bar below the 

model canvas. The generic fitness function is a convenient way of testing the match of a 

model and a set of experimental measurements or desired behavior. 

A more generic way of defining a performance function is to use a built-in scripting 

language to define arbitrary functions. The grammar of the scripting language has its basis in 

the C language with some extensions for conveniently accessing the model (Table 3.1). 

Within the scripting language one can change the rate constants, invoke simulations, and 

examine results. Essentially, the only part of the model that is not accessible from within the 
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scripting language is the model topology. While the previously described fitness function 

could be implemented within this scripting language (Table 3.2), the dialog box may be more 

convenient for first time users. 

Global variables holding fitness values (R/W): fitness objective 
 
Initial concentrations (R/W): initial 
 
Rate constant (R/W):  kc 
 
Simulation results (RO):  result 
 
Simulation invocation: simulate 
 
I/O: print 
 
Math functions: 
abs acos asin atan cos sin tan 
exp log sqrt sqr 
 
Variable types: 
float  string  int boolean void 
 
Constants: true  false 
 
Control structures: 
break case continue default do 
else for if  return  switch  while  
 
Comments: /*...*/ // ... 
 
Operators: + - * / = ||  

&& ^ ! < > %  
<= >= != == -- ++ << 

Table 3.1. Scripting language reserved keywords 

When performing stochastic simulations fitness functions are currently applied to the first 

trajectory. In the future we plan to extend GenoDYN to allow the fitness functions to 

examine individual trajectories and statistical summaries of the ensemble of trajectories. 

Optimization of model parameters 
Once a performance or fitness function is defined, it is possible to examine the sensitivity 

of the network’s performance to network parameters or to optimize the network parameters 

so as to maximize its performance (relative to the specified evaluation function). The built-in 

sensitivity analysis module of GenoDYN displays the values of the evaluation function as 

one or two parameters are varied over a range (Figure 3.5). Alternatively, network models 
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constructed in GenoDYN can be exported to independent optimization packages. The authors 

have exported models to MATLAB, Mathematica, and Globsol 38, 39 as well as to C code 

referencing CVODE.  

void main() { 
  int i = 0; 
  float res[5]; 
  float target[5]; 
  target[0] = .5;  target[1] = .5;   
  target[2] = .5;  target[3] = .5;   
  target[4] = .5; 
 
  for(i=1; i<=5; i++) { 
    kc("Rxn 1") = i/5.0; 
    simulate(); 
    res[i-1] = result("Mol 1", 100); 
  } 
 
  fitness = 0; 
  for(i=1; i<=n; i++) { 
    fitness = fitness + sqr(target[i-1] - res[i-1]); 
  } 
 
  fitness = sqrt(fitness); 
} 

Table 3.2. Example of fitness function script 

External to GenoDYN is an implementation of the hybrid genetic simplex algorithm 

(HGA), which allows specification of constraints on the allowed range of values for each 

parameter, or constraints that tie several model parameters to a single optimized parameter, 

thereby reducing the number of parameters to optimize. The HGA also extends the 

evaluation function to return both quantitative and qualitative scores, allowing one to identify 

networks that have the desired qualitative dynamics, but exhibit a poor fit with experimental 

data in quantitative terms and vice versa. As with all optimization routines, care must be 

taken to design an evaluation function that reflects the goals of optimization and helps direct 

the search for an optimal solution.  

Examples 
GenoDYN comes with an extensive library of examples that includes various models of 

the toggle switch 10, the Repressilator 11, and Guet’s plasmid library 40. We previously 

described an extensive analysis of the genetic properties of a model of the galactose switch 
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pathway 41 which is in displayed in the screen shots of in Figure 3.6. The genetic analysis of 

this model illustrates well the flexibility of the GenoDYN modeling framework that allowed 

us to benefit from a sophisticated graphical user interface to develop the model. After the 

model had been defined, GenoDYN was integrated into an optimization environment 

specifically designed to conduct the genetic analysis described in this article. 

 

 
Figure 3.5. Two-parameter sensitivity analysis 

Conclusions 
GenoDYN has been strongly inspired by our experience of using UltraSAN and later 

Möbius, two sophisticated modeling environments developed in the computer science 

community to analyze the performance of computer architectures 42, 43. The notion of fitness 

function is a biological translation of the reward functions used in performance analysis. 

Similarly, the powerful hierarchical models used by Möbius led us to define functionally 

comparable model composition operators in GenoDYN.  
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Figure 3.6. The main interface, along with the simulation results and report dialogs. 

When analyzing the properties of artificial gene networks, the possibility of defining 

control variables and different physical environments greatly facilitates the evaluation of the 

network reaction to environmental inputs. We have also dedicated significant efforts to the 

implementation of advanced visualization functions that speed up the modeling cycle by 

allowing users to quickly understand the dynamics of the model they are building.  

GenoDYN’s distributed computing architecture may be one of its most innovative 

features. Its implementation is very portable and does not depend on specific middleware. 

Users are now one click away from a high performance computing environment allowing 
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them to better analyze the stochastic dynamics of artificial gene networks. We are currently 

working to make GenoDYN available on the TeraGrid 44. GenoDYN also provides a C++ 

framework for designing custom applications, many examples of which are included along 

with the GenoDYN source code. GenoDYN is therefore well positioned to be integrated in 

the design automation solution currently being developed for synthetic biology 45. 
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Abstract 
Mathematical models of networks of molecular interactions controlling the expression of 

traits could theoretically be used as genotype to phenotype (GP) maps. Such maps are 

nonlinear functions of the environment and the genotype. It is possible to use nonlinear least 

square minimization methods to fit a model to a set of phenotypic data, but the convergence 

of these methods is not automatic and may lead to a multiplicity of solutions. Both factors 

raise a number of questions with respect to using molecular networks as nonlinear maps. A 

method to fit a molecular network representing a bistable switch to various types of 

phenotypic data is introduced. This method relies on the identification of the model’s stable 

steady states and the estimation of the proportion of cells in each of them. By using 

environmental perturbations, it is possible to collect time-series of phenotypic data resulting 

in a smooth objective function leading to a good estimate of the parameters used to generate 

the simulated phenotypes. 

Introduction 
Pharmacogenomics’ ambition is to relate a phenotype, the effect of a drug, to the 

genotype of patients exposed to environmental conditions partly defined by the drugs they 

receive 1. For a geneticist this project requires building a genotype to phenotype map (GP 

map) of drug effects. Mathematically, a GP map is a function f such as 
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f ,phenotype genotype environment  . It maps into a phenotypic space, the product of a genetic 

space generated by the genetic diversity in a population by the space of environmental 

conditions to which individuals of this population can be exposed 2. The simplest GP map is 

the one upon which relies Mendelian genetics. The function is Boolean, indicating the 

presence or absence of a character. The environment is ignored and genes are considered 

independent of each other. Since most traits are quantitative and not binary, the genetics of 

quantitative traits relies on a more refined family of GP maps representing the phenotype as 

linear statistical models. In general multiple loci are assumed to contribute additively to the 

phenotype. In some cases terms representing digenic interactions are introduced. The effect 

of the environment on the phenotype is generally decomposed into an additive term and a 

genotype by environment term 3.  

Just like complex interactions between multiple genetic loci generate a diversity of 

phenotypes for pathologies that were considered monogenic 4, responses to drugs are 

generally considered multigenic traits 5,6. Many of the genetic determinants controlling the 

response to drugs have been identified by a candidate-gene approach relying on the 

understanding of the molecular mechanisms of the drug action and metabolism. Integrating 

into a mathematical model the network of molecular interactions affecting the response to a 

drug is therefore an attractive avenue to build the GP map.  

Using different approaches, a number of authors have recently demonstrated that it is 

possible to build mathematical models to predict the phenotype controlled by small artificial 

gene networks 7-11, larger natural networks 12,13, or even genome-wide metabolic pathways 
14,15. In order to use a mathematical model as a GP map it is necessary to bridge the 

molecular- and population-levels views of the genotype-phenotype relationship. When using 

mass-action models of molecular interactions, it has proved possible to analyze the genetic 

properties of a molecular network by associating genetic polymorphism with discrete kinetic 

values of the parameter of each interaction 16. The possibility of determining the kinetic 

parameters of each interaction is key to using molecular networks as GP maps.  

One way to estimate the GP map parameters is to find a set of parameters minimizing the 

difference between the phenotype predicted by the model and the observed phenotype. Since 

the phenotype is a nonlinear function of the parameters, this problem can be addressed by 
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using a nonlinear least-square approach 17,18. Nonlinear minimization methods are iterative 

algorithms that require a set of starting parameter values to converge to a local solution. 

Different starting values can result in different solutions with different quality of fit. This 

limitation has the potential to prevent a unique determination of the map parameters. The 

topology of the molecular network model and the experimental design both contribute to 

shape the objective function being minimized. The number and geometry of its local minima 

determines the possibility to find and identify solutions corresponding to the actual 

parameters’ values that generated the set of observed phenotypes. Since for many real 

molecular networks, it is not possible to explore the entire parameter space, it is possible that 

no starting parameter values will converge toward the actual parameter set. It is also possible 

that many starting values will result in many solutions with similar fits, making it impossible 

to distinguish the solutions closest to the actual parameter set. Few authors used nonlinear 

least-square minimization to estimate GP map parameters 19,20 and it is likely that a number 

of people attempted this without success and never published their negative results. 

This paper introduces an algorithm to estimate the parameters of a molecular network 

from time-series of molecular phenotypes collected after an environmental perturbation. The 

objective function used takes into consideration the possibility that phenotypic data collected 

at the cell population level result from a random distribution of the cells among multiple 

stable-steady states. The presence of a positive feed-back loop 21 creates the possibility of 

multistationarity. Multiple steady states have been observed in artificial gene networks 22-26 

but also in natural regulatory networks 27, for which this possibility had not been considered 

even recently 28.  

The algorithm considered in this article is automatic and can be applied to virtually any 

mass action model of molecular networks without requiring any manual mathematical 

derivation. 

Methods 

Model 

The model used in this article is a mass action equivalent of a model of a bi-stable switch 
29-31. In the list of reactions below, Gi and GXi refer to the active and inactive forms of the ith 
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gene coding for the protein Pi, respectively, while Li represents the ith ligand and PXi the ith 

protein complexed with its ligand. 

     (4.1) 
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The time-evolution of the model is represented by mass-action differential equations. The 

set of coupled differential equations can automatically be derived from the chemical 

equations Equation (4.1)32. 

Mass conservation relationships can be used to eliminate some variables from the model. 

Assuming that there is only one copy of each of the two genes in the system, the first mass-

conservation relation makes it possible to eliminate the repressed forms of the genes. We also 

assume that the interaction between the small molecules representing the environment and 

the repressors are much faster than the other reactions. Using a quasi-steady state 

approximation, we eliminate R9 to R12 from the model. This results in the list of reaction 

rates below where  is the vector representing the state of the system and ri the rate of the 

reaction Ri: 
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   (4.2) 

The differential equation representing the time evolution of the system is derived from 

this list of reaction rates. 
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Numerical identification of the steady states 

The most generic way of finding steady states is to find the solutions of Equation (4.3) 

below. The notation below indicates that the reaction rates depend on the parameterization of 

the model, , and the environment,  1 8,...,k kK   1 2,L LE :  

      

   
        
        

   

8 7

1 3 6 5

2 4 8 7

6 5

2d
, , 0

2dt

r r

r r r r

r r r r

r r

 
          
  

X X

X X X XX
F X E K

X X X X

X X



      (4.3) 

Roots can be determined by minimizing  F X  starting from any point in the model state 

space. Since Equation (4.3) is nonlinear, it is not possible to analytically find its solutions. In 

order to alleviate this limitation, a grid of starting points is created in a region of the state 

space expected to include all the biologically relevant steady states of the model. 

Variables corresponding to conserved molecules are bounded by the initial conditions. 

Assuming that each gene in the model has a single copy, then 0 1 with 1, 2iG i   . The 

asymptotic values of the non-conserved molecules, i.e. proteins in this case, is somewhere 

between 0 and production degradationk k , the asymptotic value corresponding to the maximum 

expression of the gene. Therefore, in the case of the model considered here, all the steady 

states are expected to be within 1 3 2 4[0,1]x[0, ]x[0, ]x[0,1]V k k k k .  

It is therefore possible to regularly sample V with a user-specified resolution. By starting 

the minimization algorithm from each point in this grid, a numerical solution to Equation 

(4.3) will generally be found for each starting point. Numerical errors and differences of 

convergence toward the same limits will result in minor numerical differences between 

solutions reached from different starting conditions. If the distance between a solution and 

another previously found solution is less than some specified value, it is assumed that they 

are identical.  

After the scan of V is complete, the stability of the steady states is analyzed by 

computing, at the steady state, the eigenvalues of the Jacobian matrix associated with 

Equation (4.3). If the real parts of all eigenvalues are negative, then the steady state is stable.  
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Fitting to asymptotic phenotypes 

In the context of this article, “asymptotic phenotypes” refers to phenotypic data collected 

in the stationary regime 33,34 in different environments with 1,...,jE j  . Since in general all 

variables of the model cannot be observed, the number of data points collected in each 

environment  is less than M, the total number of state-variables of the model. It is 

convenient to represent asymptotic phenotypes as a X  Pmatrix . Now that the 

experimental data set is structured, it is necessary to generate a predicted phenotype  Q K  

corresponding to a given set of parameters K. Assuming that it is possible to compute  Q K , 

then the least-square distance that needs to be minimized to fit the model to the phenotypes, 

, is:  ,d K P

E             2

1 1

, ,i j i j
i j

d Q K E P
 

 

   K P        (4.4) 

Computing the predicted phenotype for a specified environment and set of parameters is 

immediate if they result in a single stable steady state S. In this case:          

       , ,   1,...,   1,...,i j i j i j   S K E Q K E .     (4.5) 

In conditions where the model has two stable steady states S and T, then the observed 

phenotype P is likely to result from a distribution of cells in the two steady states. So, instead 

of having a direct correspondence between the predicted phenotype and the observed 

phenotype, the predicted phenotype is a weighted average of the two stable steady states. 

What is not known, though, is the proportion of cells in each of the steady states. This 

proportion needs to be estimated by solving a linear constrained least-square problem:  

                
[0,1]

, , 1 ,min


 


   Q K E S K E T K E P E  .    (4.6) 

This approach can be generalized to more than two stable steady states. 

Fitting to a time series of phenotypes 

Observing the model state variables at different points in time is a natural way of 

collecting data characterizing the model dynamics 35,36. Many experimental designs can lead 

to this type of data. Only a single simple experiment is considered in this paper but it 
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demonstrates that system multi-stationarity needs to be considered to properly analyze the 

data. 

A cell population is placed in a first environment E1 until it reaches a stationary regime 

indicated by the stabilization of the phenotype. An instantaneous perturbation is applied to 

the environment, creating a new environmental condition E2. Phenotypic data are recorded at 

different time points while the population stabilizes toward a new stationary regime. For 

instance, cells can be grown in absence of ligands. One of the ligands is added to the growth 

medium creating a new environment. Samples of cell culture are taken and phenotyped at 

different points in time after the ligand has been added. This design can be generalized to 

multiple environmental perturbations. E1,j and E2,j refer to first and second environments of 

the jth perturbation. The first phenotype of each time series is collected in the stationary 

regime before the perturbation is applied. All other phenotypes are collected in the second 

environment and are indexed by the instant of observation. Similarly, it is necessary to 

compute a series of predicted phenotypes corresponding to the series of experimental data. 

The distance between the predicted and the observed phenotypes is computed by summing 

the distance over all time-points: 

           2

2, 2,
1 1 1

, , ,i j k i j k
k i j

d t
 

  
, t   K P Q K E P E      (4.7) 

Let be the solution of Equation (4.3) starting from . Computing the 

predicted phenotype for a specified environmental perturbation and set of parameters is 

immediate if the initial environment and parameter set result in a single stable steady state 

. In this case the predicted phenotypes are extracted from the solution of Equation 

(4.3) starting at : 

 0 , , ,G X K E



,S K

t 0X

 1,S K E

 1E     1 2 2,, , , , , ,k i j kG t S K E K E Q K E t . If the parameter set leads to two 

steady states in the initial environment  1,S K E and  1,T K E , then it is possible to estimate 

the proportion   just as in Equation (4.6). The predicted phenotype would then be a 

weighted average of trajectories starting from the two initial conditions S and T.  

Application 

The number of variables observed in the phenotype and the number of environments 

where the phenotypes are observed are likely to have a significant impact on the possibility 
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to match the model with phenotypic data. So, phenotypic data were simulated in different 

numbers of environments and by recording different numbers of observed variables. 

Twelve series of phenotypic data were generated using the same set of parameters. The 

first six phenotypes were asymptotic phenotypes. The second group of six phenotypes were 

time series. 

In both cases (asymptotic and time series), three of the phenotypes consisted in the 

observation of one protein, . In the remaining three phenotypes the values of both proteins 

were recorded in the phenotype.  

1P

The asymptotic phenotypes were simulated in three different numbers of environments 

(three, five, and nine environments). Environments are represented by the concentrations of 

the two ligands, (L1, L2). The first three environments were: (0,0), (101, 0), and (0, 101). In 

the five-environments experiments, (1, 0) and (0, 1) were added to the first 3 environments. 

In the nine-environments experiments (10-1, 0), (10-2, 0), (0, 10-1), and (0, 10-2) were added to 

the five previous environments.  

The times series phenotypes are transitions between two environments. In the first 

experiment, the transition from (10, 0) to (0, 10) was simulated. In the two-transition 

experiment, the transition from (5, 0) to (0, 5) was added. In the three-transition experiment, 

the transition from (1, 0) to (0, 1) was added to the two previous transitions. 

The same set of 25 initial parameter values was used to fit the model to the asymptotic 

and time-series phenotypes, resulting in a series of 300 optimizations.  

Results 

Numerical identification of steady states 

The method to find the steady states of the model works well on this model. By using 

only the eight “corners” of V, it seems that all the steady states of the system were found. 

Increasing the resolution of the grid did not result in a larger list of steady states. Depending 

on the environment and parameter values, two types of regimes were found: a single stable 

steady state or two stable steady states and one unstable steady state. 
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In the least-square minimization procedures, the specificity of this network made it 

possible to use only two initial conditions  1 30.5, ,0,0.5k k  and  2 40.5,0, ,0.5k k to find the 

stable steady states of the system. This simplification speeds up the optimization process that 

often requires hundreds or even thousands of steady state determinations. These two initial 

conditions do not allow the identification of the unstable steady states of the system and this 

approach may not be applicable to other models. 

A bifurcation diagram was generated by computing the steady states (stable and unstable) 

of the model over a range of L1 concentrations in order to verify the steady state 

identification procedure while the concentration of the second ligand was kept at zero. The 

system is bi-stable for low concentrations of L1 and beyond a critical concentration, the 

system becomes mono-stable. This result is consistent with the bifurcation diagram of a 

similar model 37 and also with our own bifurcation analysis run in XPP/AUT 38. The 

positions of the stable steady states are not very much affected by the concentration of L1, 

except in the vicinity of the critical concentration. This indicates the robustness of the 

phenotype to environmental perturbation. 

Fitting to asymptotic phenotypes 

An exploration of the neighborhood of the original set of parameters used to generate the 

phenotypes indicated that initial conditions very close to the original parameter set could not 

lead to a good fit (data not shown). This indicated that the objective function was rough and 

may be difficult to minimize. It turned out that convergence was much easier to achieve than 

initially anticipated. When the phenotype included the two protein concentrations a good fit 

was achieved for ⅓ of the initial conditions. 

This can be explained by observing that an infinite number of parameterizations have the 

same steady states. Solutions of Equation (4.3) verify Equation (4.8). The minimization 

problem defined by asymptotic phenotypes is unidentifiable. It is not possible to estimate the 

eight kinetic parameters but only the four equilibrium constants. 
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     (4.8) 

Fitting to time series of phenotypes 

The convergence criteria used in this case was a root mean square of residuals less than 

10-1. Using this criterion, 14 convergences were observed (9% of the 150 optimizations using 

time series phenotypes) that can be broken down into 13% of convergence when only one 

protein is observed and 5% when both proteins are recorded. These rates of convergence 

need to be confirmed by analyzing a larger number of initial conditions using a faster 

implementation of this algorithm. However, they are surprisingly high and indicative of a 

relatively smooth performance function. 

All optimization solutions were indexed (not shown) for further analysis. In some cases 

very similar solutions were found. For instance solution 13 is very close to solution 14 and 

solution 11 is very close to solution 12. It is worth observing that if solutions 11, 13, and 14 

all originated from the same initial condition, solution 12 was found using a different initial 

condition. Also solutions 11 and 12 are not very far in the parameter space from solutions 13 

and 14. Solution six is also located in the same area. Interestingly, these five solutions are all 

very close to the original set of parameters used to generate the phenotype. The solutions 

were verified by plotting the time course of the two protein concentrations and the profiles 

are consistent with the objective function used to generate the solutions. Protein 

concentrations corresponding to solution 11 were plotted over a wide range of initial 

conditions. Visually they are indistinguishable from the plots generated by the original set of 

parameters (Figure 4.1). 
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Figure 4.1: In order to visually assess the quality of the fit, the ODE was integrated using two 

solutions of the time-series optimization experiment and the original set of parameters used to generate 

the simulated phenotypes. The initial condition for the integration was set to (1, 0, 10, 0) and the 

environment to (0, 10). Solution six (top) was found when only one protein level was used in the 

phenotype. It is interesting to see that the fit for P1 is better than the fit for P2. The RMS computed using 

the two protein concentrations at the 11 time points is 0.83. Solution 11 (bottom) gives a very good fit of 

both of the protein expression profiles leading to a RMS of 0.06. It is necessary to zoom in on specific 

region of the plot to be able to visually distinguish the trajectories generated by the original parameter 

set and the trajectories generated by the parameters of Solution 11.  

Discussion 

Results 

Even though this work focuses on a single molecular network model, results presented 

here are likely to be relevant to other models. 

 The specific structure of molecular networks makes it possible to search for 

steady states in a limited volume of the model state space. 

 The possibility of multi-stability should always be considered. In a population of 

cells observed in a stationary regime, cells can be randomly distributed between 

multiple steady states. Therefore, the measurement of a gene activity at the cell 

population level is a weighted average of the molecule concentrations 
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corresponding to the different stable steady states of the model. For a given set of 

parameter values, different repartitions of the cells in the different steady states 

lead to different qualities of fit between the model parameterization and the 

observed phenotypes. In the context of this paper, a linear minimization step was 

introduced to find the repartition minimizing the distance between the model and 

the experimental data. 

 Asymptotic phenotypic data can only lead to the determination of the equilibrium 

constants but not the kinetic constants. 

 Environmental perturbations can be used to collect time-series of phenotypic data. 

The relaxation profile observed is a weighted average of trajectories originating 

from the different stable steady states in the first environment. 

Necessary improvements of the algorithm 

In order for this method to be used for routine analysis it will be necessary to address a 

few issues.  

 The steady state finding algorithm needs to be systematically validated. In some 

cases very stiff parameter sets hampered the convergence of the steady state 

identification procedure. The reasons for this behavior need to be understood. 

Since the steady state identification algorithm is the bottleneck of the whole 

optimization process it is worth trying to improve it.  

 Determining the stability of the steady states is also an important step of the 

algorithm. Numerical errors prevent an accurate determination of the stability in 

the vicinity of critical points. It is not clear what is the impact of this issue on the 

outcome of the minimization process. Limit cycles are not considered in this 

algorithm.  

 The local optimization method described in this paper needs to be coupled to a 

global search strategy to explore the parameter space more systematically. 

 In cases where the time of sampling cannot be controlled, it could be necessary to 

take the actual sampling time into consideration when fitting the model to the 

data. 
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 A random term representing the measurement error needs to be added to the 

phenotypic data. The effect of this term on the convergence of the least-square 

minimization should be characterized. The addition of an error term would 

transform the least-square minimization problem into a nonlinear regression 

problem that could lead to computing confidence intervals for the parameter 

estimates. 

Research directions 

We are working on a generalization of this algorithm to handle phenotypic data collected 

on a multiplicity of genotypes just like several environmental conditions have been 

considered in this paper. Along the same line, the current model assumes only one copy of 

each gene. Introducing a diploid genome with two homologous copies of each gene would 

require predicting the phenotype of heterozygous individuals, which requires developing a 

model of dominance at the parameter level. If only homozygous individuals are considered or 

a total dominance is assumed, the model would remain unchanged.  

Geneticists have been building models of the genotype to phenotype relationship for traits 

of other organisms for more than a century. By deciphering networks of molecular 

interactions, they hope to be able to build nonlinear GP maps inspired by the mechanisms 

controlling the expression of complex traits. It is expected that these maps would capture 

epistatic interactions between the genetic determinants contributing to these traits. Such a 

map would help a breeder to define more effective breeding strategies using molecular 

markers to manipulate alleles of genes contributing to trait variations or using transgene to 

introduce new sources of genetic variation, help a human geneticist to better understand how 

multiple genes can contribute to the development of a pathology, and help 

pharmacogeneticists to customize a medication to the genotype of their patients. 

Mathematical methods, such as those described here, are needed to analyze molecular data. 

The next challenge may be to find ways of associating macroscopic phenotypes such as a 

patient response to a treatment, with the molecular data we collect and analyze. 
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Abstract 
Classical quantitative genetics has applied linear modeling to the problem of mapping 

genotypic to phenotypic variation. Much of this theory was developed prior to 

availability of molecular biology. The current understanding of the mechanisms of gene 

expression indicates the importance of non-linear effects resulting from gene interactions. 

We provide a bridge between genetics and gene network theories by relating key 

concepts from quantitative genetics to the parameters, variables, and performance 

functions of genetic networks. We illustrate this methodology by simulating the genetic 

switch controlling the galactose metabolism in yeast and its response to selection for a 

population of individuals. Results indicate that genes have heterogeneous contributions to 

phenotypes and that additive and non-additive effects are context dependent. Early cycles 

of selection suggest strong additive effects attributed to some genes. Later cycles suggest 

the presence of strong context dependent non-additive effects that are conditional on the 

outcomes of earlier selection cycles. A single favorable allele cannot be consistently 

identified for most loci. These results highlight the complications that can arise with the 

presence of non-linear effects associated with genes acting in networks when selection is 

conducted on a population of individuals segregating for the genes contributing to the 

network. 

 



61 

Introduction 
Recently there has been interest in interpreting the quantitative genetic properties of 

gene networks at the population level 1,2. This is warranted on at least three grounds: (i) 

much of the molecular genetic evidence points to the roles of genes in non-linear 

networks in the determination of gene-to-phenotype relationships, (ii) we have a growing 

body of data on the structural and functional properties of the genomes of organisms and 

as this pool of data continues to expand it is becoming more feasible to construct models 

of gene networks, and (iii) for many aspects of basic and applied genetics it is necessary 

to study the properties of allelic variation for genes at the level of phenotypic effects and 

variation within populations. Bridging the molecular and population level views of gene-

to-phenotype relationships is a challenging area of research for quantitative genetics. At 

present there is no agreed upon quantitative framework but a number of approaches are 

being investigated. We constructed a model of the gene network controlling the galactose 

metabolism pathway in yeast using differential equations. This model has been used as a 

genotype to phenotype map with which to evaluate the performance of individuals in 

simulations of a mass selection process. Combining these two approaches makes it 

possible to analyze the epistatic interactions between the genes controlling this pathway 

and their impact on the selection process. 

Fundamental to genetics is the relationship between the genotype of an individual, the 

environment where it lives, and its resulting phenotype. This relationship is often referred 

to as genotype to phenotype (GP) mapping. Since the true mechanisms of gene 

expression have historically been poorly understood, geneticists have derived such 

mappings from the joint distributions of genotypic and phenotypic data. The simplest 

mapping, Mendelian genetics, considers traits that are completely determined by 

individual genes. Many traits, however, are more complex than that; they are quantitative 

in nature and are influenced by contributions from alleles at multiple loci. These multiple 

gene cases have been studied using linear statistical models that allow both additive and 

non-additive (dominance and epistasis) effects 3. Complex traits are also often dependent 

on the environment in which a genotype is expressed. In addition to the direct effect of 

the environment, genotype by environment (GxE) interactions can have important effects 

on complex traits. Traditionally, genotype to phenotype mappings have predominantly 
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been linear combinations of terms representing dominance, epistasis, GxE interactions, 

and genotype by genotype (GxG) interactions 4.  

Even though these linear statistical relationships allowed geneticists to represent the 

phenotypic variability of a large number of simple traits, working beyond the limitations 

of linear mappings is one of the main challenges faced by genetics today. Interactions 

between genes contribute to complex phenotypes in plants 5-8, mice 9, and 

microorganisms 10,11. Genetic factors that contribute to many pathologies do not have any 

direct effect on the phenotypes that are essentially determined by GxE and GxG 

interactions 12,13. These observations are interpreted as non-linear effects of gene 

interactions and are usually referred to collectively as epistatic effects 14.  

De Jong has recently reviewed various families of models that have been used to 

represent genetic networks 15. Considering the small copy number of the molecules 

involved in gene expression mechanisms, Markovian models 16,17 based on a stochastic 

version of the mass action law are an appealing representation of gene network dynamics. 

However, the cost of computing Monte-Carlo simulations limits their use to only those 

pathways having a well-documented stochastic outcome at the cellular level 18,19. 

Approximating the network dynamics by a system of differential equations provides a 

useful compromise between a realistic representation, speed of simulation, and a wealth 

of theoretical properties and analysis techniques that can complement numerical 

simulations. 

Materials and methods 
Modeling the galactose genetic switch: The galactose pathway is an attractive 

system for dynamic modeling since it integrates a gene network, a metabolic pathway, 

and a response to environmental perturbations. In a first approximation, it is possible to 

associate the phenotype to the activity of the metabolic pathway and the genotype to the 

genes in this pathway. Our model of the GAL system (Figure 5.1 and Table 5.1) is a 

simplistic representation of the complex mechanisms of gene expression. It is 

representative of the common understanding of the molecular mechanisms responsible 

for the response of yeast to the presence of galactose and glucose in its environment.  
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Figure 5.1: Diagrammatic representation of the Galactose switch 

Recent overviews of the GAL switch have been provided by Ideker 46 and Ostergaard 47. GalExt 

and GluExt are the two environmental variables of the system. Galactose is transported into the cell 

primarily by Gal2p using an ATP-dependent mechanism. It is necessary to take into consideration a 

small passive diffusion of galactose into the cell to trigger the induction of the GAL genes by 

galactose. Although there are a number of well-characterized metabolites between galactose and 

glucose 6-phosphate, we represent the whole pathway by a single step catalyzed by a hypothetical 

enzyme labeled E. Since the glucose-6-phosphatase catalyzing the transformation of Glu-6P into 

glucose is not part of the GAL network, it was omitted from the model. The gene coding for Gal4p, 

gal4g, can be in a repressed form gal4gX when complexed by Mig1 in the presence of glucose 48,49. 

For simplicity we considered a single enzyme in the pathway coded by a single gene noted GAL. The 

expression of GAL is induced by Gal4p. When in the induced state GAL-4, it expresses the E enzyme 

along with the Gal3p and Gal80p transcription factors. Gal80p represses this expression by binding 

to the GAL-4 complex. Gal3p is the galactose sensor of the GAL system. Galactose binds Gal3p 

through an ATP-dependent mechanism. The resulting complex Gal3p* binds to the GAL-4-80 

complex and induces the expression of the GAL genes50.  
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 Reaction Equation A1A1 A1A2 A2A2 

D01 Gal80p → 0 30 50 70 

D02 Gal4p → 0 16 36 56 

D03 Gal3p → 0 22 40 58 

D04 Glu → 0 50 50 50 

D05 E → 0 66 82 98 

R01 GalExt→ Gal 1 1 1 

R02 E + GalExt → Gal + E 5 6 7 

R03 E + Gal → Glu-6P + E 5 12 19 

R04 Glu-6P → Glu 100 100 100 

R05 GluExt → Glu 10 10 10 

R06 Glu + gal4g → gal4gX 7 10 13 

R07 Glu + gal4g ← gal4gX 1 2 3 

R08 gal4g → gal4g + Gal4p 4 23 42 

R09 GAL + Gal4p → GAL-4 3 7 11 

R10 GAL + Gal4p ← GAL-4 8 9 10 

R11 GAL-4 + Gal80p → GAL-4-80 2 3.5 5 

R12 GAL-4 + Gal80p ← GAL-4-80 3 5 7 

R13 Gal3p* + GAL-4-80 → GAL-4-80-3 6 8 10 

R14 Gal3p* + GAL-4-80 ← GAL-4-80-3 1 10 19 

R15 Gal + Gal3p → Gal3p* 1194 1320 1446 

R16 Gal + Gal3p ← Gal3p* 700 809 918 

R17 GAL-4 → GAL-4 + E 10 19 28 

R18 GAL-4 → GAL-4 + Gal3p 1 2 3 

R19 GAL-4 → GAL-4 + Gal80p 15 101 187 

R20 GAL-4-80-3 → GAL-4-80-3 + E 330 336 342 

R21 GAL-4-80-3 → GAL-4-80-3 + Gal3p 178 309 440 

R22 GAL-4-80-3 → GAL-4-80-3 + Gal80p 294 338 382 

Table 5.1: Chemical equations and parameters 

Reactions are labeled in the first column. The chemical equation of the reaction is given in 

column 2. Each parameter has two allelic values A1 and A2. The columns A1A1, A1A2, and A2A2 

indicate the parameter values used when genotypes are homozygous (A1A1 and A2A2) or 

heterozygous (A1A2). Parameters in bold characters indicate the genotype of the individual with the 

highest performance that was generated at the 35th generation of the 34th run. Parameters 

highlighted by a gray background correspond to the favorable alleles that were consistently fixed in 

more than 95% of the 1,000 runs. Lines (Reactions) in italic are non-segregating in Experiment 1 and 

Experiment 2 because they correspond to interactions outside of the GAL system. Parameter values 

highlighted in gray were made non-segregating in Experiment 2. 
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Biology: To date, the effect of the environment has often been ignored in models of 

gene networks. Alternatively, it is possible to consider the environment as a set of 

external parameters, where simulation runs with various parameter values can be 

compared to evaluate the impact of the environment on the model dynamics 20. For many 

situations it seems that this approach is able to capture the biological logic of the 

network. In the case of the galactose pathway of yeast, the environment can change the 

state of the genetic switch by inducing or repressing the expression of the GAL genes. 

However, the relationship between the network and its environment is not one-way. The 

induction of the GAL genes by galactose results in the transformation of galactose into 

glucose. This transformation introduces a feedback loop by which the induced state of the 

GAL system leads to a modification of the environmental conditions that lead to this 

induction. In an effort to capture this behavior, we introduced in the model GalExt and 

GluExt, which can be regarded as external pools of molecules not affected by the 

dynamics of intracellular reactions. Passive diffusion or active transport of these 

molecules into the cell can be represented by chemical equations transforming these 

molecules into their intracellular counterparts, Gal and Glu, respectively (reactions R01, 

R02, and R05 in Table 5.1). Gal and Glu can be regarded as the variables indicative of 

the intracellular environment. The value of the two control variables GalExt and GluExt 

indicate the presence of sugars in the environment. Absence and presence were indicated 

by 0 and 10, respectively. The combination of GalExt and GluExt values defines an 

environment. 

Dynamics: The time-evolution of the model is represented by mass-action differential 

equations. The set of coupled differential equations can automatically be derived from the 

chemical equations of Table 5.1 21. Specifically, the matrices of stoichiometric 

coefficients for the reactants ,i r  and products ,i r of the reactions can be used to 

represent the generic form of a chemical equation: 

        , ,
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The rate of each reaction depends on the concentration of its reactants: rv
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The time-evolution of a molecule concentration is ruled by the balance between the 

rates of the reactions producing this molecule and the ones using it as a reactant: 

        
 

, ,
i

i r r i r r
r r

d X
v v

dt
           (4.3) 

The complete set of differential equations is given in the Appendix in MATLAB 

format. 

Genotypes, phenotypes, and traits: In order to analyze the response of a gene 

network to selective pressure, it is necessary to establish a correspondence between the 

basic properties of genetics at a population level and the characteristics of genetic 

networks. Our analysis relies on the following: 

Segregating loci as model parameters: The reaction rates are genetically determined. 

It is well established that directed mutations of promoters or protein domains can affect 

the rates of protein-DNA interactions, protein-protein interactions, gene expression, or 

even affect the catalytic properties of an enzyme. Hence, each parameter is determined by 

a number of segregating loci. The precise mapping of the genetic space onto the 

parameter space depends on the number of genes involved (N) and the extent of genetic 

polymorphism. In the case of a bimolecular reaction like R09 (Table 5.1, Figure 5.1), the 

rate of the binding of the Gal4p protein on the GAL promoter can be determined by the 

sequence coding for Gal4p and by the regulatory sequence of GAL. Potentially, two loci 

could determine the rate of this reaction but if only one of them is polymorphic, it is not 

necessary to consider in the model the locus corresponding to the conserved sequence. In 

the context of this paper, a single locus was associated with each parameter (i.e. N=27). 

Alleles as discrete parameter values: The association between loci and parameters 

makes it natural to associate allelic polymorphism with variation of specific parameter 

values. Each polymorphic locus is assumed to have two alleles in this paper (larger 

numbers can be considered). A null allele translates into a zero value of the 

corresponding parameter. Alleles having a less dramatic effect result in parameters 

having an x-fold higher or smaller value than the wild-type. The within locus parameter 

values are assumed to be additive so that the heterozygous genotype is given the average 

parameter value of the homozygous genotypes for the two alleles. Different levels of 

dominance at the individual parameter level can be allowed but are not considered here. 
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In the context of this article, we do not consider the possibility of introducing mutations. 

The genetic space is thus finite and discrete. Its 3N genotypes are the 3N parameter 

combinations resulting from the selection of one of the three possible parameter values 

(columns) in each of the 27 lines of Table 5.1.  

Phenotypes as vectors of traits: Traditionally the phenotype of an individual is 

defined by the value of the biometric data that can be measured at some point in time 

(e.g. grain yield of crops, the number of bristles on a segment of Drosophila spp). These 

biometric data rarely translate directly into molecular variables but they are indicative of 

the performance of the individual. In order to relate a model to experimental 

observations, it is necessary to derive trait values from the model itself.  

Traits as functions of a model: The biometric data collected to score a trait are static, 

time-independent observations. Even though life is a dynamic process that develops in 

time, phenotypes are observed in standard conditions that remove time from the 

observation. Even traits tightly associated with the timing of development are considered 

static in genetics. The transition from vegetative growth to reproduction or flowering 

time provides a good illustration of this point. The whole developmental process is 

reduced to a single datum, the time of the transition to flowering. The genetic analysis of 

this trait relies primarily on this single observation of individuals in a population. Traits 

are a means to score the various characteristics of genotypes. In the case of the GAL 

system, the most obvious trait is the capability to process galactose when it is the only 

source of carbon available. How does this translate in the context of our model of the 

galactose switch? There are several possible interpretations of this trait. The variable 

representing the enzymes or the variables representing metabolites can be used as 

indicators. In this case we elected to use Glu-6P as an indicator of the state of the 

galactose pathway. In order to quantify the trait, we assigned target values for Glu-6P in 

the 3 environments (we ignore the trivial case where no sugar is present Gal-Glu-). 

Arbitrarily, we decided that Glu-6P should be 0 in the two environments where the 

pathway should not work (Gal-Glu+, Gal+Glu+) and 2 in Gal+Glu-. The system of 

differential equations was integrated between t=0 and t=104 where it is assumed to reach 

steady-state. By noting  the value of Glu-6P at time 104 in the Glu+Gal- 

environment, this first trait is: 

 410X  
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            2 2
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1 1 27, , 10 2 10 0 10 0T k k X X X      
2

4 





  (4.4) 

A second trait was also defined for this model. Comparable levels of external 

galactose and glucose are expected to lead to comparable levels of internal glucose. By 

noting  the value of Glu at time 104 in the Gal-Glu+ environment, this second 

trait is: 

 410Y

         2 2
4 4 4

2 1 27, , 10 2 10 2 10 2T k k Y Y Y      
2

   (4.5) 

A trait value can be computed for each of the genotypes of the genetic spaced 

considered in this article. So, for instance, 

 is the 

trait value of the genotype where all loci are A1A1 expect D02 (A1A2) and R02 (A2A2)  

 1 30,36, 22,50,66,1,7,5,100,10,7,1, 4,3,8, 2,3,6,1,1194,700,10,1,15,330,178, 294T

Performance as a function of traits: A numerical performance function is computed 

for selection purpose. This summarizes results from a number of elementary traits that 

determine how well an individual performs in a given environment. There are multiple 

ways of combining several trait values in a performance function. In the context of this 

work, we considered: 

     1 27 1 1 27 2 1 2, , , , . , ,k k T k k T k k    7      (4.6) 

Simulation of selection: To simulate effects of selection operating on the model of 

the galactose pathway, we developed a simple genetic algorithm application that was 

interfaced with a gene network simulator utilizing CVODE 22. For this article we have 

limited ourselves to a mass selection strategy where the phenotype of an individual is the 

only criterion used to evaluate the performance of a genotype.  

The initial population (500 individuals) contained equal numbers of each allele at all 

segregating loci in the galactose pathway model. A constant selection pressure of 20% 

was applied to all cycles of selection across all simulations. We simulated a case where 

there was sustained directional selection for smaller values of the performance function 

over 100 cycles of selection. One thousand replicates of the simulation were conducted. 
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Results 
Model: The model of the molecular network described in this paper has two specific 

features not commonly found in the literature on gene networks: (1) control variables are 

used to represent the dynamic interaction of the model with the environment; (2) trait and 

performance functions are defined to evaluate the performance of a model 

parameterization. 

Control variables: For the sake of reproducibility, the simulations described in this 

paper do not take full advantage of the possible time evolution of control variables. 

Instead of assigning a constant value to environmental factors such as the sugar 

concentrations, it is possible to specify the variation of these concentrations in time. This 

feature makes it possible to evaluate other traits of the model. For instance, it is possible 

to quantify the ability of the network to react to changes of the environment. The trait 

functions described in this work do not distinguish the networks that will quickly adapt to 

new conditions from the ones that will need more time to turn the galactose switch ON 

and OFF. In models of other regulatory networks, control variables had also been used to 

represent the effect of physical parameters of the environment such as temperature, 

volume, or light.  

Environment Glu-6P Glu

Gal-Glu+ 0.000000 2.000000 
Gal+Glu- 1.994018 3.988036 

Gal+Glu+ 0.011255 2.022515 

Performance = 0.025341 T1 = 0.012746 T2 = 1.988163 

Table 5.2: Performance computation 

In order to illustrate how performance is computed, the performance of the best performing 

individual generated across the entire simulation is computed in this table. This individual was found 

in the 35th generation of the 34th run of the simulation. Simulations were run in the 3 different 

environments containing sugars and the value of Glu-6P and Glu at t=104 are reported in this table. 

The two traits can be derived from these data by using equations (4.4) and (4.5). The performance 

score is the product of the two trait values. 

Performance function: In order to assess the way individuals are scored by the 

performance value, we looked for the individual with the lowest performance value that 

was generated across the entire experiment. This individual was found at the 35th cycle of 
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run 34. It is interesting that this individual was not found in the population generated at 

the end of the selection process (cycle 100). The performance value of the best individual 

is approximately 0.025 (see Table 5.2). The values achieved at the end of the selection 

process are typically close to 0.20. This 8-fold difference tends to indicate that a dramatic 

loss of performance occurred during the selection process. That is when it becomes 

necessary to examine how these performance values are achieved, i.e. the property of the 

trait and performance functions used in the simulation. The values in Table 5.2 show that 

the target values for Glu-6P are reached in the three environmental conditions and T1 can 

reach a very low value. This is not the case for T2. The target values for Glu are reached 

in Gal-Glu+ and Gal+Glu+ conditions but we cannot get close to the target value of 2 in 

the Gal+Glu- condition. When the best individual is compared to the best individuals 

typically found in the last cycle of selection, it turns out that their behavior is very 

comparable. Minimal changes in Glu-6P values result in a significant difference in the T1 

value, which propagates to the performance value. Even more interesting is the 

examination of the time-evolution of Glu-6P and Glu when the molecular network is 

integrated. Asymptotic values are quickly reached in Gal-Glu+ and Gal+Glu- but the 

system oscillates when placed in Gal+Glu+ conditions. The amplitudes of the oscillations 

are significant (0.5 for Glu and 0.3 for Glu-6P) but the values are close to the target 

values at t = 104. This shows how dependant is the outcome of the selection process on 

the trait and performance functions.  

Simulations: Running such an experiment is a significant computational challenge. 

There are very significant differences of simulation time between runs since some 

simulations can be achieved in 1.7 hours while others would take up to 4.4 hours on a 

processor running at 2.8 GHz. Most of the time is spent evaluating the performance of 

50,000 individuals generated during 100 populations of 500 individuals. Since the model 

needs to be simulated in three different environmental conditions, the differential 

equations are integrated 150,000 times in each run. In order to speed up the genetic 

algorithm, previously evaluated phenotypes are recorded in a cache. Some simulations 

are likely to explore larger regions of the genetic space than others. Even though the total 

number of individuals evaluated is the same for all simulations, some will evaluate more 

gentoypes than others, which explains the differences of simulation time. In order to 
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complete the 1,000 runs in an acceptable time (approximately 15 hours), the simulations 

were distributed over the 56 nodes of a Linux cluster, each node having two processors. 

The selection process simulated in this experiment is extremely basic. Its implementation 

did not require much programming. In order to use the analyze the response of regulatory 

networks to actual breeding programs, we also interfaced the molecular network 

simulation environment with QU-GENE, an environment for simulating breeding 

strategies 23,24. 

Response to selection: There are two ways to analyze the network response to 

selection. The time-evolution of performance is indicative of the effect of selection while 

the time-evolution of allele frequencies tells us how this effect is achieved. Two 

experiments (series of 1,000 simulations with identical parameters and initial conditions) 

were conducted. In Experiment 1, the only non-segregating loci were those 

corresponding to interactions that are often considered “outside” the Galactose switch. In 

a second experiment, Experiment 2, we also fixed the favorable alleles of loci having an 

additive effect in the results of Experiment 1 (see Table 5.1 for details).  

   
Figure 5.2: Time evolution of the population average performance distribution 

Data were recorded during Experiment 1 and Experiment 2, each consisting of 1,000 

simulations. Histograms of the inverse of the population average performance values were computed 

for each of the 100 cycles of selection and the frequency color-coded. Results from Experiment 1 (left) 

show that the distribution is clearly non-normal since it exhibits at least eight modes. Beyond cycle 

80, the selection process has reached its asymptotic distribution. The distribution observed in 

Experiment 2 (center) is fairly similar to results of Experiment 1. The main difference is the weight 

of the bottom mode (blue peak) indicating that a large fraction of the simulations never achieved 

good performance values. In order to better compare these two distributions, the time evolutions of 

their mean values were plotted on the third graph (right). It shows that better performance is 

achieved in Experiment 2 (green line) for the early phases of the selection process. However, the long 

term response to selection in Experiment 2 is not as good as in Experiment 1. 
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The response to selection of this genetic system can be illustrated by graphing the 

evolution over cycles of selection of the mean performance value of the population. 

However, in the case of this experiment this graph did not appear the most appropriate. 

The best performers in our experiment have the lowest performance value. As a result the 

selection results in a reduction of performance values over time. The other problem is 

that the performance function has an absolute lower bound. So the plot of the mean 

performance values over cycles of selection is difficult to read since all the runs tend to 

accumulate toward 0. To overcome these difficulties, the statistical distribution of the 

inverse of the mean performance value was plotted (Figure 5.2). 

Experiment 1: The statistical distribution of mean performance values is initially 

unimodal (Figure 5.2, left). Beyond cycle 50 or so up to eight modes can be identified. 

Interestingly, there is a mode corresponding to poor levels of performance. There are also 

two major modes corresponding to good performance and a few minor modes of 

intermediate values. Beyond cycle 50, the selection process appears to have reached its 

asymptotic distribution. However, the observation of individual trajectories indicates that 

despite a constant selection pressure, the populations can move from one mode to the 

other, resulting in quick gains or losses of performance even in the stationary regime. 

This pattern indicates that the performance landscape is complex with multiple local 

maxima and that the fluctuations of the selection process are large enough to move the 

population from one peak to the next. 

Allele frequencies exhibit a fairly complex behavior at most loci (Figure 5.3, top). 

Fixation of one of the two alleles in more than 95% of the runs is observed for seven loci 

(D02, D05, R08, R14, R18, R19, R21). In the other cases the final allele frequencies are 

variable and are distributed between 0 and 1 with peaks at 0%, 50%, and 100%. Thus, 

either one of the homozygotes or the heterozygote could be favored depending on the 

replicate. So for most loci it is not possible to clearly identify a consistently favorable 

allele; the favorable allele is highly context dependent. Also, since a small percentage of 

the runs lead to retaining the heterozygous state, both alleles could be retained. Also 

included in Figure 5.3 is the time-evolution of the four parameters that are not 

polymorphic. They are the only ones exhibiting a random drift behavior. These loci can 
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thus be considered as negative controls. All the polymorphic loci have some selective 

value in this experiment since none of them drift as the non-polymorphic ones do. 

Cycle = 5

0% 50% 100%

D01
D02
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D04
D05
R01
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Figure 5.3: Evolution of alleles frequencies under selection  

During the Monte-Carlo simulations corresponding to Figure 5.2, the frequencies of allele A1 at 

each of the 27 loci were recorded. Histograms of these frequencies were color-coded as in Figure 5.2. 

To illustrate the effect of the selection process on the genetic makeup of the population, five 

histograms corresponding to the selection cycles 5, 25, 45, 65, and 85 are displayed. In Experiment 1, 

D02, D05, R08, R14, R18, R19, R21 one of the two alleles is consistently fixed in more than 95% of 

the simulations. For most loci, however, no allele is fixed. Frequency distribution is multimodal with 

peaks at 0%, 100% and often 50%. Non-polymorphic loci (D04, R01, R04, and R05) exhibit a pattern 

indicative of genetic drift.  

Experiment 2: In Experiment 2, the seven loci that had a favorable allele in 

Experiment 1 were fixed and thus made non-polymorphic (see Table 5.1) By fixing the 

favorable allele in the parameter file, it was anticipated that the transient phase of the 

selection process would be shortened. It turns out that the initial mean performance 

values are actually better (Figure 5.2, center) as anticipated. However, the asymptotic 

distributions are significantly different. The heavily loaded mode at the bottom of the plot 

indicates that a large fraction of the simulations never manage to achieve good levels of 

performance. This is confirmed by comparing the time evolution of the mean of these 
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two distributions (Figure 5.2, left). The mean for Experiment 2 (green line) is initially 

higher than the mean of Experiment 1 (blue line). Since, initially, the performance 

response is slow, this results in almost a 10-cycle advantage provided by the fixation of 

favorable alleles. However, there is a long-time cost to this more limited genetic 

variability since the long-term response of Experiment 2 is not as good as in Experiment 

1. The response of allele frequencies to selection is very similar in Experiment 1 and 

Experiment 2 even though some minor quantitative difference can be observed. 

Future work will relate the peaks of the performance distribution (Figure 5.3) with the 

distributions of the allele frequencies. It appears that the context dependent combinations 

of alleles emphasized by the results of the different replicates of the selection process 

correspond to different peaks of performance on a moderately rugged landscape (data not 

shown).  

Discussion 
Molecular networks as GP maps: GP maps have traditionally been based on 

statistical models. In some cases we now have enough understanding of the molecular 

mechanisms to capture their dynamics into mathematical models. There are some 

indications in the recent literature that we now have models with some predictive power 

of the phenotype 25-28. Analyzing the genetic properties of regulatory networks raises a 

number of theoretical and technical problems, which explains the limited numbers of 

articles dealing with this problem. 

Non-linear GP maps: Introduction of non-linear terms in genotype to phenotype 

mappings leads to considerable theoretical difficulties that prevent any closed-form 

expression of the model properties. As suggested by Kempthorne 29, the development of 

software to simulate genotype-environment systems (e.g. plant breeding programs) has 

enabled geneticists to explore the genetic consequences of non-linear mappings in silico 
24,30 without the need for an analytic result. The E(NK) framework provides a foundation 

for an in silico approach to genetic analysis of the properties of linear and non-linear 

gene-to-phenotype mappings at the individual and population levels 4. It is specified as a 

generalization of Kauffman's NK gene network model 31, where a set of N genes are 

assumed to be under the control of, on average, K other genes in the network. The E(NK) 
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framework incorporates GxE interactions through allowing a series of NK genotype to 

phenotype relationships corresponding to different environment types for a given target 

population of environment types. Here the target population of environments is defined 

as a mixture model of different environment-types. Within this generic modeling 

framework various types of genotype to phenotype mappings can be implemented 32,33. 

So far we have examined a wide range of artificial gene networks, results from molecular 

map based genetic mapping of traits, and a combination of genetic analysis and crop 

growth models 32. In this paper, we describe a way to build a genotype to phenotype map 

within the E(NK) framework that relies on our understanding of the molecular 

mechanisms of gene expression. 

It is interesting to relate the results presented in this paper to previous work based on 

the E(NK) framework. In a broad perspective, molecular networks can be considered as 

E(NK) models. In the context of this paper we have N=27 loci and E=3 environments. 

Even though the loci in our model interact, quantifying the level of connections between 

genes, K, proves difficult. In molecular networks, interactions between genes often 

involved more than one reaction. Hence there is not straightforward way of computing K. 

This limitation does not really matter since it is often used as a summary statistics in 

experiments based on an ensemble approach to gene networks. Since in this paper the 

network we analyze is not random, the actual topology of the network is more 

meaningful than the parameter K.  

Computational challenges: Simulating the evolution of a population of network 

models requires solving the model with a large number of different parameterizations 

(size of the population x number of generations). In order to estimate the fluctuations of 

the selection process, it is necessary to repeat the simulation of the network evolution a 

large number of times. Since dynamic models are orders of magnitude more expensive to 

simulate than a static model of a GP map, running an experiment such as the one 

described in this paper is a significant technical challenge. 

Multiscale models: A major challenge in using regulatory gene networks or metabolic 

pathways as genotype to phenotype mappings is that gene networks are dynamical 

systems and consequently their properties are defined by reference to their time 

evolution. In contrast, the common genetics view is a more static vision of the 
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relationship between the genotype of an individual and its phenotype. Time is included to 

describe the evolution of populations of individuals across generations. Analysis of the 

genetics of gene networks requires introducing a different time scale. By introducing a 

correspondence between genetic loci and the parameter space of a gene network on the 

one hand, and by defining trait functions to quantify the performance of a model 

parameterization on the other hand, we reconcile a theoretical framework that assumes a 

static relationship between phenotype and genotype with dynamical models of gene 

expression.  

An important step of this approach is to reduce the time-evolution of the gene 

network into a set of static gene to phenotype relationships. So far, the performance of 

gene networks has been reduced to the asymptotic level of expression of one or few 

genes in one particular set of simulation conditions 34,35. In this paper we have formalized 

and generalized the notion of trait and performance functions applied to models of 

molecular interactions. Instead of focusing on the level of expression of specific genes, 

the traits considered in this paper are derived from metabolite concentrations. These 

indicators integrate the effect of all genes in the system along with the effects of 

environmental parameters. This approach makes it possible to integrate the environment 

in the GP maps derived from molecular networks. In other simulations, we have defined 

on the same model, trait functions to quantify the ability of the model to quickly react to 

environmental perturbations or to quantify the stability and robustness of a network (not 

shown).  

Trait and performance functions: We were surprised to find networks exhibiting 

oscillations in one environment at the end of the selection process. This observation 

illustrates the dependence of the selection outcome on the trait functions and performance 

index. By using a naïve expression of the trait that relied on a single data point rather than 

calculating a trend, the selection process lead to parameterization consistent with our 

specification of the selection target but more complex than we anticipated. Similarly, we 

illustrate that finding the right expression to combine several traits into a single 

performance index is challenging. Again, the examination of the outcome of the selection 

showed that the performance function we used in this experiment is not optimal. The 

choice of trait and performance functions is partly subjective since there is not one single 
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way to quantify the properties that will be maximized by the selection process. By 

comparing the outcome of simulated selection using different performance functions, it 

might be possible to evaluate their relevance in the computer before using them in actual 

breeding programs.  

Genetics of molecular networks: Even though the model of the galactose switch 

considered in this paper has not been validated by any experimental data, the results are 

probably representative of the results we would get from a model derived from molecular 

data. It will be necessary to apply the same approach to a number of molecular networks 

models to better understand the model topology and regulation translate into genetic 

properties. 

Performance landscape: The multiple modes of the asymptotic distribution of the 

average performance values demonstrate that the outcome of the selection process is 

highly uncertain from a common starting point. In the context of plant breeding programs 

where there is only a single realization of the selection process, this observation raises a 

number of issues for risk management and breeding program design. From an 

evolutionary perspective, it is striking that given a deterministic genotype to phenotype 

mapping and a stable environment, the selection process can have a large diversity of 

outcomes. It would be interesting to investigate the properties of the performance 

landscape in vivo. This would require conducting a large number of selection experiments 

in parallel starting from identical conditions. Conducting such an experiment requires 

having first derived from a molecular network model, a GP map explaining a large 

number of observed genotype to phenotype relationships. Such a map should also have 

some prediction power on the unobserved regions of the genetic space. The derivation of 

validated GP maps from the understanding of molecular mechanisms controlling the 

expression of complex traits remains a major scientific challenge 36. 

Exploration of the genetic space: Assuming that a GP map with a good prediction 

power is available, then another possible application of this type of simulations is the 

identification of the genotypes with outstanding levels of performance by exploring the 

genetic space in silico rather than in vivo. These genotypes could then be assembled by 

fixing alleles one locus at a time using genotyping techniques and marker based selection. 
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This application could be evaluated today by introducing a genetic variability in artificial 

gene networks 27,37. 

Molecular noise: In the context of this article, the gene network dynamics have been 

represented by differential equations. It is recognized that the small copy number of some 

molecules involved in the mechanisms of gene expression (e.g. transcription complexes, 

genes) can result in molecular fluctuations responsible for some level of phenotypic 

variability. This has been addressed theoretically 17, numerically 16,38, and experimentally 
39. Using a stochastic model of the gene network dynamics might have a significant 

impact on the outcome of the selection process. It is likely to smooth the performance 

landscape. Having non-deterministic performance values would also reduce the 

likelihood of the process from being trapped on local performance minima. By modeling 

molecular interactions with mass-action equations as opposed to specialized biochemical 

kinetics, it is possible to simulate the fluctuations of molecular interactions without 

changing the model. In a follow-up paper we will show how molecular noise can 

influence the response to selection of a molecular network. It seems likely that molecular 

noise influences the expression of some complex traits in higher organisms 40,41. The 

framework described in this paper makes it possible to investigate its evolutionary 

consequences. 

Context-dependency of genetic effects: For seven of the loci, one of the alleles was 

fixed in more than 95% of the runs. These alleles can be regarded as favorable within the 

context of this parameterization of the genotype to phenotype mapping of the galactose 

pathway. In a first approximation, these alleles have a strong additive effect on 

performance. However, for the remaining polymorphic loci, the contribution of each 

allele to performance is context dependent and it is not possible to classify either of the 

alleles as favorable without specifying the context. At the individual level, the context 

refers to the alleles present at other loci associated to the trait. At this level, the context-

dependency of allele values results from the non-linearity of the model of molecular 

interactions. Context-dependency can also be considered at the population level. The 

selective values of the allele at one particular locus depends on the allele frequencies of 

all other loci associated to the trait being selected. 
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Epistasis is a challenging concept with different meanings in molecular biology and 

genetics. At the molecular level, all the genes of the GAL system are engaged in some 

form of cis or trans interaction. Epistasis seems prevalent at this level. For geneticists, 

epistasis is associated with the limits of the additive model of gene action. If the 

complexity of the selection process indicates epistatic effects, it is nonetheless striking 

that most genetic gain takes place during the first 50 cycles of selection in our simulation 

experiment. This suggests that at the population level the system is initially in a largely 

additive state, despite these molecular interactions. However, following cycle 50 the 

results of the selection process are much less predictable. This indicates that the initial 

cycles of selection predictably fix particular alleles at seven loci. The additive genetic 

variation associated with these seven loci is exploited by selection. Following this 

additive gain, the population structure is such that the system moves into a state where 

there are more context-dependent, non-additive effects exploited by selection. The 

consequence is the many possible selection end points by cycle 100. It may thus be 

necessary to refine our understanding of the consequences of molecular interactions by, 

for instance, relating genetic epistasis to the control properties of the regulatory circuits 

of the gene network model 42. Further, the results we observe reinforce that views of 

genetic variation based on the concepts of additive and non-additive (dominance, 

epistatic) components of variance for a trait are population specific and are therefore time 

dependent in relation to the cycles of selection 43. The work presented in this paper paves 

the way to a more formal analysis of the genetic properties of molecular networks. In 

particular, it is necessary to analyze physiological and statistical genetic effects 44,45. The 

techniques to analyze genetic interactions between more than two loci raise a number of 

theoretical and computational problems that are beyond the scope of this article. 

It is an inspirational first step to use models of molecular interactions for gene 

networks and their gene-to-phenotype mappings, such as our representation of the 

galactose pathway, to consider the complex biological processes involved in the changes 

brought about by plant breeding. In turn this provides a demonstration of important issues 

that must be considered in the design of molecular plant breeding strategies. 
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Appendix 
The model of the GAL switch is given in this appendix in a format suitable for use 

with the MATLAB functions for numerically integrating differential equations.  

Y0 = zeros(16, 1); % initial condition 
Y0(1) = 0.000000;  % GalExt
Y0(2) = 0.000000; % GluExt
Y0(3) = 0.000000; % Gal
Y0(4) = 0.000000; % Glu-6P
Y0(5) = 0.000000; % Gal80p
Y0(6) = 0.000000; % Gal4p
Y0(7) = 0.000000; % Gal3p
Y0(8) = 0.000000; % GAL-4-80
Y0(9) = 0.000000; % GAL-4-80-3 
Y0(10) = 0.000000; % Glu
Y0(11) = 0.000000;  % gal4g
Y0(12) = 1.000000; % gal4gX
Y0(13) = 0.000000; % E
Y0(14) = 1.000000; % GAL
Y0(15) = 0.000000; % GAL-4
Y0(16) = 0.000000; % Gal3p*
KC = zeros(27, 1); % vector of kinetic 
KC(1) = 50.000000; % Gal80p → 0 
KC(2) = 36.000000; % Gal4p → 0
KC(3) = 40.000000; % Gal3p → 0
KC(4) = 50.000000; % Glu → 0
KC(5) = 82.000000; % E → 0
KC(6) = 1.000000; % GalExt → Gal 
KC(7) = 6.000000; % E + GalExt → Gal + E
KC(8) = 12.000000; % E + Gal → Glu-6P + E
KC(9) = 100.000000; % Glu-6P → Glu 
KC(10) = 10.000000; % Glu + gal4g → gal4gX
KC(11) = 1.000000; % Glu + gal4g ← gal4gX
KC(12) = 23.000000; % gal4g → gal4g + Gal4p
KC(13) = 7.000000; % GAL + Gal4p → GAL-4 
KC(14) = 9.000000; % GAL + Gal4p ← GAL-4 
KC(15) = 3.500000; % GAL-4 + Gal80p ↔ GAL-4-
KC(16) = 5.000000; % GAL-4 + Gal80p ← GAL-4-
KC(17) = 8.000000; % Gal3p* + GAL-4-80 → GAL-
KC(18) = 10.000000; % Gal3p* + GAL-4-80 ← GAL-
KC(19) = 101.000000; % GAL-4 → GAL-4 + Gal80p
KC(20) = 2.000000; % GAL-4 → GAL-4 + Gal3p
KC(21) = 338.000000; % GAL-4-80-3 → GAL-4-80-3 
KC(22) = 309.000000; % GAL-4-80-3 → GAL-4-80-3 
KC(23) = 336.000000; % GAL-4-80-3 → GAL-4-80-3 
KC(24) = 19.000000; % GAL-4 → GAL-4 + E 
KC(25) = 10.000000; % GluExt → Glu 
KC(26) = 1320.000000; % Gal + Gal3p → Gal3p*
KC(27) = 809.000000; % Gal + Gal3p ← Gal3p*
r1 = KC(1) * Y(5); % Gal80p → 0 
r2 = KC(2) * Y(6); % Gal4p → 0
r3 = KC(3) * Y(7); % Gal3p → 0
r4 = KC(4) * Y(10); % Glu → 0
r5 = KC(5) * Y(13); % E → 0
r6 = KC(6) * Y(1); % GalExt → Gal 
r7 = KC(7) * Y(1) * Y(13); % E + GalExt → Gal + E
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r8 = KC(8) * Y(3) * Y(13); % E + Gal → Glu-6P + E
r9 = KC(9) * Y(4); % Glu-6P → Glu 
r10 = KC(10) * Y(10) * Y(11); % Glu + gal4g → gal4gX
r11 = KC(11) * Y(12); % Glu + gal4g ← gal4gX
r12 = KC(12) * Y(11); % gal4g → gal4g + Gal4p
r13 = KC(13) * Y(6) * Y(14); % GAL + Gal4p → GAL-4 
r14 = KC(14) * Y(15); % GAL + Gal4p ← GAL-4 
r15 = KC(15) * Y(5) * Y(15); % GAL-4 + Gal80p ↔ GAL-4-
r16 = KC(16) * Y(8); % GAL-4 + Gal80p ← GAL-4-
r17 = KC(17) * Y(8) * Y(16); % Gal3p* + GAL-4-80 → GAL-
r18 = KC(18) * Y(9); % Gal3p* + GAL-4-80 ← GAL-
r19 = KC(19) * Y(15); % GAL-4 → GAL-4 + Gal80p
r20 = KC(20) * Y(15); % GAL-4 → GAL-4 + Gal3p
r21 = KC(21) * Y(9); % GAL-4-80-3 → GAL-4-80-3 
r22 = KC(22) * Y(9); % GAL-4-80-3 → GAL-4-80-3 
r23 = KC(23) * Y(9); % GAL-4-80-3 → GAL-4-80-3 
r24 = KC(24) * Y(15); % GAL-4 → GAL-4 + E 
r25 = KC(25) * Y(2); % GluExt → Glu 
r26 = KC(26) * Y(3) * Y(7); % Gal + Gal3p → Gal3p*
r27 = KC(27) * Y(16); % Gal + Gal3p ← Gal3p*
Y2 = zeros(16, 1); % State of the system 
Y2(3) = 1 * r6 + 1 * r7 + -1 * r8 + -1 * % GalExt
Y2(4) = 1 * r8 + -1 * r9; % GluExt
Y2(5) = -1 * r1 + -1 * r15 + 1 * r16 + 1 * % Gal
Y2(6) = -1 * r2 + 1 * r12 + -1 * r13 + 1 * % Glu-6P
Y2(7) = -1 * r3 + 1 * r20 + 1 * r22 + -1 * % Gal80p
Y2(8) = 1 * r15 + -1 * r16 + -1 * r17 + 1 * % Gal4p
Y2(9) = 1 * r17 + -1 * r18; % Gal3p
Y2(10) = -1 * r4 + 1 * r9 + -1 * r10 + 1 * % GAL-4-80
Y2(11) = -1 * r10 + 1 * r11; % GAL-4-80-3 
Y2(12) = 1 * r10 + -1 * r11; % Glu
Y2(13) = -1 * r5 + 1 * r23 + 1 * r24; % gal4g
Y2(14) = -1 * r13 + 1 * r14; % gal4gX
Y2(15) = 1 * r13 + -1 * r14 + -1 * r15 + 1 % E
Y2(16) = -1 * r17 + 1 * r18 + 1 * r26 + -1 % GAL
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Chapter 6. Model parameter and topology fitting 

 

Abstract 
Motivation: Modeling of biochemical networks requires extensive knowledge of 

interactions and rates. However, the required interactions and rates are often incompletely 

understood. This creates an immediate need in synthetic biology for methods to fit 

models to experimental observations. 

Results: GenoFIT is an optimization and exploration tool aiding the development of 

models of biochemical networks. Complementing the GenoDYN modeling environment, 

GenoFIT provides, as an optimization tool, a means to optimize model parameters, 

topology and rates, to capture the dynamics of experimental observations. As an 

exploration tool, GenoFIT can produce ensembles of network models that express a 

desired set of dynamics. GenoFIT uses distributed computing for improved performance 

as well as a built-in scripting language for specifying evaluation functions. 

Availability: Complete GPL licensed source code is available from the author. 

Contact: kent.vandervelden@ieee.org 

Introduction 
A model of a biochemical network summarizes available knowledge of the network. 

However, the model has the potential to be more useful by estimating the response to 

external stimuli and other perturbations. Methods for simulating models1-4 and directly 

solving their systems of equations for steady states5-7 are well known. However, these 

methods require that a model, including its topology, kinetic parameters, and initial 

conditions, be fully specified. The topology can be estimated using techniques, such as 

gene knock-outs, to expose dependencies that define the network topology. Relative 

initial conditions may be possible to estimate; however, due to basins of attraction, 

models should be fairly robust to imprecise initial conditions.  

Kinetic parameters are the greatest challenge in developing a fully specified model. 

The easiest way to measure kinetic rates is in vitro, but such an environment, free of the 

spatial constraints of a cell, can result in inaccurate kinetic rates at best8. Measurement of 
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kinetic rates in vivo is more difficult and would be uncommon to perform for all 

interactions. 

If experimental observations are available for the model species, an evaluation 

function can be formulated that measures the model’s deviation from observations. The 

evaluation function may be as simple as sum of squared error. Alternatively, if no 

experimental measurements are available but if a qualitative description of the dynamics 

is, an evaluation function can also be constructed. The evaluation function transforms the 

process of finding parameters into an optimization or search process. Since the number of 

observed species is likely to be less than the number of model parameters, the 

optimization process will be under-constrained and thus many apparently equivalent sets 

of parameters will exist. The model parameters located during optimization are unlikely 

to be the true kinetic parameters but are still potentially useful for model prediction. 

Much research has been applied to optimizing metabolic networks9-11, and model 

fitting of gene regulatory networks is less refined12-14. One reason for this disparity is that 

metabolic networks are composed of largely static chemical reactions while regulatory 

networks are more transitory by their nature. The choice of modeling formalism also 

affects the ease of model fitting. A nonlinear formalism, such as one based on tightly 

coupled differential equations, will naturally be more difficult to optimize than one based 

on linear approximation such as s-systems. With nonlinear models, techniques may not 

exist that guarantee convergence to the global optimum. 

Evolution produces complex systems from random mutations guided by selective 

pressure. Computer scientists, inspired by evolution, created the field of evolutionary 

computation that uses the same principles thought to be at work in evolution. Through 

evolution, nature has been successful, more than engineers, in constructing systems 

robust in noisy environments. It is therefore only natural to apply the concepts of 

evolutionary computation to the problem of network modeling. 

Evolution of network models is an extension of model fitting that increases the 

degrees of freedom available. Model fitting considers alterations of the model’s 

parameters alone with no impact on the model’s topology. With network model 

evolution, the topology of the network is allowed to change as well as the parameters. 

While similar to network reverse engineering15,16 in goal, evolutionary methods do not 
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rely on statistical inference, but instead rely upon random changes and selective 

pressures. Similar approaches have been used successfully to direct the evolution of an 

engineered network in vivo17. 

Previous attempts to evolve networks include that of Sakamoto and Iba18 which used 

a genetic programming19 approach consisting of unconstrained parse trees representing 

differential equations of arbitrary mass-action reactions. This approach explores large 

areas of a search space containing models without analogues to known regulation 

mechanisms and ultimately may settle on such a model. Possibly key to the success of 

Francois and Hakim20 was limiting the procedure to only reactions that correspond to 

viable regulation mechanisms, resulting in a smaller search space. However, without 

restricting the use of the building blocks, several unusual constructs were possible, such 

as transcription factors consisting of more than four subunits or unusual promoter–gene 

constructs. Regardless, the resulting networks are more likely to be realistic than those 

found by the Sakamoto and Iba’s method. Also, neither method considered the effects of 

delays between transcription and translation known to be important for circadian clock 

networks21.  

GenoFIT is the tool we present next that combines the ability to fit the reaction rates 

of an existing model to experimental data with the ability to evolve new network 

topologies. The ability to evolve networks is particularly interesting, as it may help to 

develop initial models for new systems. In our discussion of GenoFIT, we will first 

present the methods used by GenoFIT followed by four examples. In closing, we discuss 

uses and limitations of GenoFIT and suggestions for future improvements. 

Methods 
GenoFIT has two modes of operation. In one mode, GenoFIT only optimizes the 

parameters, while in the second mode GenoFIT may also manipulate the topology. In the 

following sections we will discuss the methods for optimizing the parameters and 

topology separately. Following those discussions there are some final words on common 

operations that GenoFIT must perform regardless of its mode. 
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Optimization of parameters 

GenoFIT searches for solutions using a genetic algorithm22 (GA) for global 

optimization and a downhill simplex algorithm23 (SA) for local refinement. The 

stochastic search of the GA quickly samples the parameter space, initially avoiding local 

minima, but it is not well suited for fine-tuning a particular solution within a local area. 

The downhill descent behavior of the SA quickly finds local minima of areas visited by 

the GA, but by itself it would quickly become trapped in a local minimum. The GA and 

SA complement each other, and this hybrid approach has been successfully applied 

previously11. 

 
Figure 6.1: Example network model 

To understand the encoding and the operators used by GenoFIT, consider the 

example shown in Figure 6.1. This model contains four reaction rates to optimize. Each 

reaction rate is mapped to an optimization parameter, allowing each reaction rate to have 

a unique optimization parameter (Figure 6.2) or multiple reaction rates to be associated 

with a single optimization parameter (Figure 6.3). This mapping is controlled by the 

GenoFIT parameter file. 

  

Figure 6.2: 1-to-1 parameter mapping Figure 6.3: Many-to-1 parameter 

mapping 

The GA maintains a population of individuals where each individual actually 

represents a set of model parameters. Each iteration of the GA produces a new population 

based upon the previous population by using a combination of crossover and mutation 

events. Crossover operates by selecting a pair of individuals, biased by their fitness 

compared to the rest of the population, and produces parameters of the new individuals 

by shuffling corresponding parameters of the selected individuals between crossover 
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points. Two types of crossover operators are available in GenoFIT differing in the 

number of crossover points: two-point crossover (Figure 6.4), which always selects two 

points, and n-point crossover (Figure 6.5), which randomly chooses each parameter. If it 

is known that contiguous ranges of parameters behave as units, the two-point crossover 

may have an advantage. 

 
Figure 6.4: 2-point crossover 

 
Figure 6.5: N-point crossover 

In addition to the crossover event, random mutations (Figure 6.6) may also occur. A 

mutation can occur at any parameter, adjusting it by a random amount within a 

percentage, specified in the parameter file, of the original value. 

 
Figure 6.6: Point mutation 

If individuals in the new population cannot be simulated properly, e.g. due to 

unrealistically stiff equations that cause the integrator called during simulation to fail, 

GenoFIT can either leave this individual, likely discarding it in the next generation due to 

the unlikeliness of its being selected, or immediately replace it with a new random 
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individual. To avoid losing an individual with good fit, the top individual can optionally 

be ensured a place in the next generation. 

Since the selection of individuals is biased by their relative fitness, ultimately the 

population will converge to highly similar individuals during the later cycles of the GA. 

The point where this will occur is dependent partially upon the population size as well as 

selection pressure. To avoid population stagnation altogether and having individuals 

trapped in local minima, the diversity of the population can be periodically examined 

and, if too low, the bottom half of population can be replaced with random individuals. 

During each iteration, some number of the top individuals of the population, 

controllable from the parameter file, can be optimized using the SA. To avoid excess time 

being spent performing local optimization, an upper limit on the number of iterations or 

wall clock time can be set on the SA. 

Key to any optimization is the proper specification of the evaluation function. 

GenoDYN includes a rich scripting language for defining evaluation functions. All the 

model parameters, except the topology, are accessible and can be modified from within 

scripts. Evaluation functions can set both a fitness score of an individual and optionally 

an objective score. The fitness score is a quantitative score, often some derivative of root-

mean-square deviation (RMSD) from measured values, while the objective score is more 

often a qualitative score. Individuals are first sorted by the objective score and then by the 

fitness score. The need for two measures is to help specify the evaluation function for 

complex behavior that is hard to capture with RMSD alone. The observation driving the 

use of two scores is that qualitative dynamics are harder to obtain than the quantitative 

values, but after obtaining correct dynamics, the emphasis can shift to refining the values.  

Models of biochemical systems can have many parameters, and with more 

parameters, the search space becomes larger, and the optimization problem is likely to 

become harder in general. Any reduction in the number of parameters should result in a 

simpler optimization problem. Not every parameter of a biochemical system is likely to 

be independent. For example, the rates of each instance of translation, transcription, and 

protein degradation could be assumed to be the same, potentially allowing many 

parameters to be collapsed. To facilitate the collapse of similar parameters, GenoFIT 

maps a set of model parameters to a set of optimization parameters with predefined 
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ranges. It is the optimization parameters that are actually manipulated, and manipulation 

of an optimization parameter has the effect of changing each associated model parameter. 

Any number of model parameters is allowed to share the same optimization parameter. 

Being able to specify ranges that are valid for optimization parameters helps to 

simplify the parameter search space, but being able to specify the range as a function of 

other parameters would be even more useful. In its current form, GenoFIT does not 

directly support this within its configuration file. However, we have accomplished this in 

a rudimentary way by using the fitness function scripting language to test for correctness 

of the parameters and by penalizing individuals that deviate from the desired functional 

relationship of the optimization parameters. 

 

Parameter ranges: 
# RxnName       Index into param table  Rxn Equation    Kinetic value 
GFP      0           # GFP --> 0 
TetR        1           # TetR --> 0 
PL2      2   3  # (lambda cIg) + 4LacI <-> (lambda cIgX) 
PL-a     4   5       # GFPg + 2(lambda cI) <-> GFPgX 
PL-b     4   5       # LacIg + 2(lambda cI) <-> LacIgX 
# Parameters 
# Param Index   Min     Max                     -or- 
# Param Index   Fixed Value 
0      0.001        100 
1      0.5 
2      0.001        1 
3      0.001        1 
4      0.001        100 
5      0.001        100 

Figure 6.7: Example parameter specification 

Many of the features of model and optimization parameters are shown in Figure 6.7, 

which is a section of a GenoFIT parameter file. Eight model parameters and six 

optimization parameters are specified. First, the model reactions are listed, including their 

name used in the model file and an index into the optimization parameter list. Each 

reaction that will be optimized, but not necessarily all reactions, must be assigned an 

optimization parameter; reversible reactions must have two optimization parameters 

assigned. In the example, reactions PL-a and PL-b involve the same transcription factor 

and promoter, are assumed to have a similar reaction rate, and thus have the same 

optimization parameters assigned. Following the list of reactions is the list optimization 

parameters which are tuples of index value and either a minimum-maximum pair or a 
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single value. If a single value is used, the model parameters referencing that optimization 

parameter will be assigned that fixed value for the entire optimization. If a minimum–

maximum pair present, GenoFIT is allowed to vary that parameters inclusively between 

those values. 

Optimization of model topology 

When evolving a network topology GenoFIT can no longer code the optimization 

parameters as a fixed length vector. Instead, individuals are graphs. Crossover operations 

are not used because there is no direct correspondence between individuals. The number 

of reactions and their order will vary. Mutation operators modify reactions rates, as 

before, and also are able to introduce new network components. Mutation operators 

modify reaction rates much more frequently than network components are added. 

GenoFIT samples from a collection of building blocks when selecting a new 

component to add. The building blocks are an abstraction of an underlying mass-action 

reaction motif that is representative of a biochemical process. The collection could 

simply be a reaction node and a molecule node; this would allow the greatest freedom, 

but also allow many more unrealistic topologies. Instead, biologically relevant building 

blocks identified by Francois and Hakim20 and shown in Figure 6.8 through Figure 6.14 

are used.  

These building blocks use four types of molecules: genes, proteins, gene–protein 

complexes, and protein-protein complexes. GenoFIT enforces that when a building block 

is added that only compatible molecule types are connected to compatible points on the 

building blocks. For instance, a gene node could not attach to a protein node on a 

building block. 

 

 

 
Figure 6.8: Protein production 
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Figure 6.9: Protein production with bound promoter building block and model 

 

 

 

 

 
Figure 6.10: Phosphorylation building block and model 

 

 
Figure 6.11: Catalytic protein degradation building block and model 
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Figure 6.12: Protein complex formation building block and model 

 

 

 

 
Figure 6.13: Partial complex degradation building block and model 

 

 

 
Figure 6.14: Catalytic partial complex degradation building block and model 

GenoFIT introduces modules into a network randomly without bounds. By not 

explicitly removing modules during the evolution, a module that is introduced might 
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eventually be made important as the result of a subsequent change, or an unimportant 

module may be rendered useless by its kinetic rates falling to zero. Regardless, the final 

models are likely to contain many unnecessary components. After all iterations are 

complete, GenoFIT can apply a pruning process. During the pruning process, modules 

are removed from the network iteratively and the model is reevaluated. If the removal did 

not severally alter the evaluation function and did not alter the objective function, then 

the removal is allowed and another round of removal is applied. If the evaluation function 

changes considerably or the objective score decreases then the removal is rejected and the 

removal of a different module is tested. This process is repeated until no further modules 

can be removed without severely affecting the evaluation and objective function severely 

negatively. Although GenoFIT only makes a single pruning attempt, alternative solutions 

are possible given the selection of the modules to be tested is random. 

Common operations 

Model fitting can be very time-consuming. To help with this, GenoFIT uses 

distributed computing. A single task is designated as the supervisor task, which is 

responsible for communicating with worker tasks, including distributing the model and 

subsequently the individuals. During each iteration, the population is divided between the 

workers that are responsible for performing the simulations, calculating fitness, and 

refining optional local areas. The results are returned to the supervisor, which is 

responsible for building the next generation. Simplifying management, the same binary is 

used for both the workers and the supervisor. 

Upon completion, GenoFIT saves a GenoDYN compatible file containing the final 

model. If optimizing only the parameters, this model will be identical to the original but 

with updated parameters. It is also possible to save a controllable number of top 

individual in each generation. Sometimes it is interesting to examine the parameter space 

trajectory that GenoFIT took to arrive at the final configuration. Model parameter sets 

can be easily extracted from the network files and tabulated using tools found with 

GenoDYN. 
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Results 
To demonstrate GenoFIT, we will consider four examples. Each example is 

optimized in triplicate. The population contains 100 individuals and the population 

evolves for 100 generations. Each example uses RMSD from target measurements as the 

evaluation function. The fourth example also includes an objective function. 

The first two examples consider existing models where simulated results provide the 

target values for the evaluation function. Each specie is measured at three time points, t = 

0, t = 10, and t = 100. It is likely that the data used for optimization will be steady state or  

time series measurements. To compare these two usage scenarios we compare optimizing 

each network using only the last time point (steady state) and using all three time points 

(time series). 

The third example considers an existing model that exhibits bi-stability. This example 

demonstrates how an evaluation function alone can lead to misleading results. 

The fourth example evolves a toggle-switch model de novo given only evaluation and 

objective functions. We examine how the top individual changes over time. Also, we 

examine how pruning identifies the functional core of the model. In Appendix B this 

particular example is extended and we examine how one can identify similar models 

between populations and how many alternatives models may exist which are all equally 

valid. 

Each example considers a model which is synthetic. By considering only synthetic 

examples, we are assured that a solution exists and that valid parameters are known ahead 

of time, allowing evaluation of the quality of the optimized parameters with respect to the 

original parameters. 

Example 1 

The model shown in Figure 6.15 represents gene transcription and translation with 

negative feedback controlling transcription and protein degradation. This is a common 

motif present in models of regulatory networks. Node A represents the inaccessible gene, 

B represents the accessible gene, and C represents the protein product. Transcription and 

translation is captured in the R3 reaction, degradation of C is captured in the R4 reaction, 

and gene regulation is captured by the R1 and R2 reactions. 
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Figure 6.15: Model of self-regulated protein production 

 
Time A B C 
1.00 0.62 9.38 0.72 
10.00 6.05 3.95 1.11 
100.00 9.83 0.17 5.38 
Table 6.1: Target values for evaluation function 

The values used for the evaluation function are shown in Table 6.1. Figure 6.16 

shows species trajectories of the original and two sets of optimized parameters using only 

the last time point. While the trajectories appear quite different from the original, the last 

time point matches quite well. 

 

Figure 6.16: Original and optimized model trajectories (steady state) 

As one might expect, with additional constraints of the time series data the optimized 

parameters more closely match the original dynamics (Figure 6.17). By examining the 

deviation of the highest ranked individual in each generation, it can be seen that GenoFIT 

quickly finds a rough set of parameters and then slowly refines them (Figure 6.18). 
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Figure 6.17: Original and optimized 

model trajectories (time series) 

 

Figure 6.18: Deviation over time (time 

series) 

Comparing the original and the optimized parameters (Table 6.2) further exposes 

differences, and quickly reaffirms that the original parameters are unlikely to be 

recovered due to the under-constrained nature of the optimization process. Not only are 

the same values not reconstructed, but the parameters are not even ranked in the same 

order, and there is considerable variation within each parameter. The use of time series 

data reduces the variation somewhat, especially among R3 and R4, which control protein 

production and protein degradation, respectively. 

 

 Steady state Time series 
Parameter Target Run 000 Run 001 Run 002 Run 000 Run 001 Run 002
R1 0.100 8.588 785.58 0.003 330.734 0.282 2.078 
R2 0.200 23.056 1573.5 0.005 395.550 0.407 2.629 
R3 0.200 19.630 621.17 0.135 0.201 0.201 0.202 
R4 0.001 0.461 19.577 0.00001 0.007 0.005 0.006 
Fitness  0.063 0.001 0.015 0.560 0.240 0.497 

Table 6.2: Original and optimized kinetic parameters 

Example 2 

Example 2 (Figure 6.19) is similar to Example 1, containing two copies of the protein 

production and degradation motif. However, instead of self-regulation, in this example 

each protein regulates the other. The proteins are nodes C and F, which regulate the two 

genes between their active states, B and E, and their inactive states, A and D. Despite 

several of the model parameters having similar purposes (e.g. protein degradation), each 

model parameter was mapped to an independent optimization parameter. 
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Figure 6.19: Model of production of two proteins that regulate each other 

 

Time A      B      C D E F 
1.00 1.00 9.00 1.55 0.19 9.81 0.91 
10.00 9.34 0.66 1.79 3.77 6.23 3.16 
100.00 9.98 0.02 1.65 4.05 5.95 17.88 

Table 6.3: Target values for evaluation function 

As with Example 1, we sample three time points from the simulation results of the 

original network to define the values for our fitness evaluation function (Table 6.3), and 

then we perform steady-state and time-series experiments in triplicate. Again, we can see, 

with a limited number of time points such as with the steady-state set, that GenoFIT has 

considerable freedom to find solutions, demonstrated by the deviation in the trajectories 

(Figure 6.20). 

 
Figure 6.20: Original and opimized model trajectories (steady state) 

The two additional time points of the time-series data set have a dramatic affect on 

the deviation of the trajectories, and it is difficult to find any discrepancy between the 

time course of the original and the optimization networks (Figure 6.21). The time-course 
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deviation of the best individual (Figure 6.22) shows that this example stresses GenoFIT 

more than the previous example (Figure 6.18), as GenoDYN took longer to reach the 

point of slower progress.

Figure 6.21: Trajectories of original and 

optimized kinetic parameters (time series) 

Figure 6.22:  Deviation of optimized model 

over time (time series)

 Steady state Time series 
Parameter Target Run 000 Run 001 Run 002 Run 000 Run 

001 
Run 002 

R1 0.100 0.00001 3838.000 0.012 0.178 0.126 0.093 
R2 0.200 0.113 427.674 0.020 0.287 0.230 0.194 
R3 0.200 0.124 0.028 1.354 0.197 0.199 0.197 
R4 0.001 0.013 0.00001 0.00001 0.0008 0.002 0.0002 
R5 0.080 53.926 390.218 9287.00 0.066 0.058 0.071 
R6 0.020 13.327 101.050 2319.07 0.017 0.016 0.018 
R7 0.300 0.157 0.053 6.791 0.293 0.295 0.298 
R8 0.100 0.050 0.00001 2.263 0.097 0.098 0.099 
Fitness  0.031 0.392 0.005 0.210 0.148 0.071 

Table 6.4: Original and optimized kinetic parameters 

The amount of variability in the parameters for the steady-state case is high across all 

the parameters except R3, which is the production rate of one of the two proteins (Table 

6.4). The additional data of the time series experiment reduces the variability and appears 

to split the parameters into two classes of variability (Table 6.4). Parameters R3, R6, R7, 

and R8 not only have a low amount of variability, but their values are also close to the 

corresponding values of the sampled model, while R1, R2, R5, and R4 have much greater 

variability. Each of the parameters corresponding to protein production, R3 and R7, has 

low variability, which was also the situation with Example 1. Beyond that, there is no 

clear commonality to explain the partitioning and it may simply be a coincidence. 
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Example 3 

Here we consider how an evaluation function can be misleading if not properly 

designed. The model shown in Figure 6.23 is a toggle switch, which can switch between 

two states in response to control pulses. The nodes P1 and P2 represent the proteins of the 

model and by observing the concentration of these two proteins we will see the bi-modal 

behavior of this model. CV 1 and CV2 are the sources of environmental stimuli and via 

Rxn 1 and Rxn 2, respectively, they create a sudden increase in concentration of P1 and 

P2. 

 
Figure 6.23: Toggle switch model 

 
Figure 6.24: Environmental pulses 
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Pulses generated by CV 1 and CV 2 at times 1000, 2000, and 3000 (Figure 6.24) toggle 

the state of the model. The proper behavior of this model is shown in Figure 6.25. Following 

each pulse, the system quickly reestablishes steady state behavior. 

 
Figure 6.25: Desired toggle switch dynamics 

An evaluation function can be defined that calculates the fit of any set of model 

parameters as the RSD from the observed concentrations for P1 at an assumed steady state 

(Figure 6.26).  

 

void main() { 
  int i = 0; 
  float time[8]; 
  float p1_target[8]; 
  float p2_target[8]; 
  time[0] =  950;  p1_target[0] = 2.20400;  p2_target[0] = 0.0632; 
  time[1] = 1950;  p1_target[1] = 0.04276;  p2_target[1] = 1.3990; 
  time[2] = 2950;  p1_target[2] = 2.20400;  p2_target[2] = 0.0632;   
  time[3] = 3950;  p1_target[3] = 0.04276;  p2_target[3] = 1.3990; 
     
  simulate(); 
 
  fitness = 0; 
  for(i=0; i<4; i++) { 
    fitness = fitness + sqr(p1_target[i] - result("P1", time[i])); 
  } 
 
 fitness = sqrt(fitness); 
} 

Figure 6.26: Toggle switch evaluation function 
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With this evaluation function, GenoFIT quickly finds parameters that appear to exhibit 

bi-stability (Figure 6.27), though not identical to original dynamics (Figure 6.25). In 

particular, P2 does not exhibit the desired dynamics.  

 
Figure 6.27: Optimized toggle switch dynamics given above fitness function 

While GenoFIT quickly found this solution that the evaluation function ranks high, if the 

time scale is increased, allowing the model to simulate 10x longer between pulses we find 

that the previously observed low plateaus of P1 are unstable (Figure 6.28). While Figure 6.27 

shows P1 at two distinct concentration levels, P1 had not yet reached steady state, a criterion 

that the evaluation function did not test for and that GenoFIT quickly exploited. 

 
Figure 6.28: High fit solution simulated longer showing previously misleading steady states 
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Example 4 

The last example considers a toggle switch again, but this time the topology is evolved 

using a collect of building blocks. The population is seeded with models containing two 

genes producing the indicator proteins (P000 and P001). Two control variables (CV1, CV2) 

act as environmental stimuli switching the state of the system. Correct behavior of the 

network is when P000 is in a high concentration, then P001 is in a low concentration. 

Likewise, when P000 is in a low concentration, then P001 is in a high concentration. The 

shift of P000 from low to high concentration is signaled by a pulse from CV1, and the shift 

of P001 from low to high concentration is signaled by a pulse from CV2. 

The evaluation function, a quantitative measure of fit, is calculated using RMSD between 

the expected levels (10.0 in the “on” state and 0.0 in the “off” state) and the observed 

concentrations (Equation 6.1). The objective function (Equation 6.2), a qualitative measure 

of fit, is calculated by measuring the change in concentration between consecutive states for 

both indicator proteins just before transition when steady state is most likely to have been 

reached. The change in concentration is required to be greater than 1.0, and the sign indicates 

the direction of the switch between “on” and “off” states. Four values are possible for the 

objective function: 0: no toggle switch phenotype is observed; 1: P0 is exhibiting the toggle 

switch behavior alone; 2: P1 is exhibiting the toggle switch behavior alone; 3: both P0 and P1 

are correctly exhibiting the toggle switch behavior. The optimal model will have a low 

evaluation score and the objective score of 3. Both functions are required because they test 

seemingly incompatible aspects of the model’s behavior. Although a maximal objective score 

truly represents a successful network, the function is too coarse to guide the evolution 

process. The evaluation function, however, is continuous, allowing ranking and 

distinguishing slight improvements; however it can be misleading, as seen in Example 3. A 

low evaluation score does not necessarily mean a high objective score or vice versa. Also, an 

improvement in the objective score is more important than an improvement in the evaluation 

score. 
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Equation 6.1: The toggle-switch evaluation function. 

The steady state point after each transition is represented by A, B, C, D. 
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Equation 6.2: The toggle-switch objective function. 

The steady state point after each transition is represented by A, B, C, D. 

 

Figure 6.29 through Figure 6.33 show the best performing model every five generations, 

along with plots of the two indicator proteins and control variables. These figures 

demonstrate the evolution of the network and the emergence of the desired phenotype. The 

only change to the models from GenoFIT was to organize the layout of the nodes. 
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Figure 6.29: Best of Generation 0 – Evaluation score = 61.1 – Objective score = 0. 

The initial topology of all the individual networks in the population, each initialized with random kinetic 

constants. No sustained response to the control variables is observed. 

 

 
Figure 6.30: Best of Generation 5 – Evaluation score = 50.2 – Objective score = 0. 

The topology has not changed; all improvement has been a result of mutation of the kinetic constants. 

Qualitatively, no improvement has been achieved. 

 

 



108 

 

 
Figure 6.31: Best of Generation 10 – Evaluation score = 48.75 – Objective score = 0. 

Additional modules have been added to the network and the kinetic constants continue to be mutated. 

Some mutual regulation is starting to be demonstrated. 
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Figure 6.32: Best of Generation 15 – Evaluation score = 46.5 – Objective score = 3. 

The switching phenotype is observed. Additional network motifs have been added and kinetic constants 

mutated. The observed concentrations are not quite at the desired levels, but qualitatively this is a 

significant improvement. 

 

 



110 

 

 
Figure 6.33: Best of Generation 20 – Evaluation score = 39.5 – Objective score = 3. 

The concentrations levels continue to be improved and there is less noise at transition. 

After the model has captured the required phenotype, pruning is performed in order to 

remove modules which are not necessary. Figure 6.34 shows the final toggle switch model. 

 
Figure 6.34: Final pruned toggle switch model 
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It is probable that a series of alternative networks exhibiting the desired phenotype will 

be found. Each of these alternatives is a possible solution itself, but better understanding may 

come from considering the collection as a whole. This is supported by the evolution 

hypothesis that details of observed biological systems are not uniquely inevitable24,25. 

(Alternative toggle switch solutions are considered in the appendix of this chapter.) 

Discussion 
The first two example models are simple, but they contain motifs present in more 

complex networks, namely protein production, degradation, and gene regulation. The more 

complex a model is, the more time GenoFIT will require though exact requirement is 

difficult to predict. Beside the number of parameters, the smoothness of the evaluation 

function and the quantity of local minima potentially have great influence on the 

computational time required.  

The evaluation function is key to successful use of GenoFIT. Unintended optima will 

quickly be exposed if they are easier to reach than the intended optimum26. Evaluation 

functions must be crafted to avoid unintended optima. One approach that can help without 

making the evaluation functions overly complex is to define one evaluation function that 

describes the quantitative fit to data and a second that describes the qualitative fit. Individuals 

are first ranked by the qualitative fit and then within each qualitative class they are ranked by 

quantitative fit. This approach works quite well, especially when seeking networks with non-

trivial qualitative behavior such as a toggle-switch. 

In most cases, the evaluation function will be RMSD from experimental measurements. 

These data must therefore be of high quality, contain low noise, and be sufficiently 

information-rich to expose dynamics with measurements at time points that differentiate the 

species behavior. For instance, multiple values sampled from a period of stability contain 

may be redundant. However, if the desired behavior is a change in state in response to stimuli 

or oscillation, the observations must demonstrate this behavior.  

Due to the under-constrained nature of the optimization being performed by GenoFIT, 

many parameter sets will have equal evaluation scores. However, they may vary in 

robustness. A particular parameter set that captures the experimentally observed dynamics 
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may also allow the network to enter undesirable states exhibiting unexpected oscillatory, 

chaotic, or otherwise complex behavior. If such possibilities are of concern, subsequent 

analysis of candidate parameter sets by nonlinear methods may be necessary7,27. 

Although constraints reduce the size of the search space, care must be taken when 

constraining an evolutionary computation strategy used as a discovery method. Solutions 

from unconstrained searches can be interesting due to their exploitation of search space 

properties that were not obvious a priori. When forced to choose, the better choice is to 

expand the search space, within reasonable limits, instead of constricting the search space 

and removing viable solutions.  

Future directions 

The ability to map model parameters to an intermediate set of optimization parameters is 

a great benefit for reducing the parameter space of the optimization problem. Being able to 

specify allowed ranges for each optimization parameter further simplifies the task. However, 

additional restrictions can still be envisioned; for instance, some parameters may depend 

upon others. For example, it may be desirable to specify that protein degradation always be 

less than production. More generically, one could specify the allowed range of an 

optimization parameter to be a function of other parameters. This could be accomplished 

using some functional notation in the configuration file or by specifying a function written in 

the scripting language that is executed parallel to the evaluation function. A crude version of 

this is possible currently by checking, within the evaluation function, that the relationships 

are met and if not by assigning a low evaluation score. 

GenoFIT is able to sample a regular grid of initial values to test for multiple steady states. 

When used in this fashion, the fitness function compares the target value to an average of the 

results across the observed steady states for each environment. This is suitable for situations 

where experimental measurements are made of an entire population of cells, effectively 

averaging the potentially distinctness of the individual cells. This approach exposed 

limitations in the ODE solver, as some of the identified steady states are actually the result of 

the ODE solver numerically failing without warning, must likely due to unmanaged floating-

point error and the stiffness of the system of equations. Restriction of optimization 
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parameters reduces the stiffness of the equations but does not entirely eliminate the problem. 

Research into the area of handling multiple steady states is quite important as non-trivial 

networks will contain feedback and thus be capable of exhibiting multiple steady states. The 

use of only ODEs, especially starting from only a single initial state, will be misleading in 

many cases. Further research, to improve performance of stochastic simulation, including 

hybrid stochastic simulation28, is also necessary. 

The current process of using GenoFIT requires models to be developed in GenoDYN, 

saved, and then optimized using GenoFIT. In the future we plan to unify both programs. The 

new program will provide an interface for manipulating models, writing objective 

descriptions used to specify desired behavior, and rating models produced by the exploratory 

process of topology evolution. This system is likely to support only discrete simulation 

instead of ODEs. We believe that the decision to focus on discrete simulation will enable 

consideration of alterative steady states and result in a more robust environment free from 

floating point failures. Focusing on stochastic simulation will require extending the scripting 

language to access statistical measures of the ensemble of trajectories.  

Currently, GenoFIT is only available for Linux and other Unix-like systems by compiling 

on each system from the available source code. A binary could be built for Windows, but 

most computing clusters use Linux as their operating system, so a Windows binary has not 

been pursued. 

Conclusion 
GenoFIT combines hybrid optimization, a scripting language, and distributed computing 

to create a powerful model-fitting tool. Combining GenoFIT with GenoDYN yields a 

complete modeling environment for synthetic biology. We have shown how GenoFIT is able 

to fit models of various complexity, discussed pitfalls possible with evaluation functions, and 

discussed future directions for improvements. The ability to evolve the topology is a unique 

optimization method and potentially represents a novel way to develop constructs for 

synthetic biology.   
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Appendix 

Comparison of network topologies  

Biochemical networks can be represented as directed graphs with nodes representing 

molecules and edges representing interactions or transformations of the molecules. Instead of 

building a network model from scratch, it may be possible to select one from a collection of 

networks exhibiting the correct phenotype. As additional knowledge is gained, the collection 

of topologies can be pruned by removing those that no longer fit the understanding of the 

system. For this method to be viable, a measure of graph similarity is required to discard 

topologies that are identical and possibly highly similar. Such a measure also provides insight 

into the flexibility of the network topology through measure of variation. Although the 

similarity could be measured considering the minimum score derived from an analysis of the 

maximum common subgraphs, such a process would be very slow. Instead we developed a 

heuristic that reasonably captures how one would rank the similarity of network topologies. 

To build this heuristic, a comparison of six graph distance metrics derived from the 

Laplacian matrix was made on an exhaustive collection of non-isomorphic graphs up to and 

including size five. The graphs were generated using geng and glist composing gtools 

distributed with nauty, which implements specialized graph algorithms including the 

determination of isomorphism. Tables were constructed of measured distances between any 

two graphs for each metric and ranked. Examination of the most similar and especially the 

most dissimilar graphs was made by eye to decide if the heuristic reasonably ranked the 

graphs. The best heuristic compared the top eigenvalues in common between the 

unnormalized Laplacian matrices treating missing eigenvalues as zeroes.  
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Comparison of graph distance measures based on the Eigenvalues of 

the Laplacian Matrices 

The Laplacian matrix (6.3) is defined for undirected, unweighted non-reflexive graphs to 

be the negative of the edge adjacency matrix with the vertex degrees along the diagonal. The 

Laplacian matrix is symmetric, each row sums to zero, and all the eigenvalues are 

nonnegative. The Laplacian matrix also has a normalized form (6.4) which considers the 

degrees of the nodes. The eigenvalues of the normalized Laplacian matrix are in the range [0, 

2]. 

Definition of Laplacian matrix, where di is the degree of vertex i: 
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Definition of normalized Laplacian matrix, where di is the degree of vertex i: 
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Measure comparison 

Given two graphs G1 = <N1,E1> and G2 = <N2,E2> and the associated sorted vector of 

eigenvalues 1 and 2 of the Laplacian matrices for G1 and G2 respectively, we define three 

distance measures. 

Distance measure d1 compare only the number of eigenvalues in common between both 

graphs: 
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Distance measure d2 treats eigenvalues that are not shared between the graphs as zeroes: 
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Distance measure d3 ignores eigenvalues which are zero: 
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The differences between these distance measures will be noticed when comparing graphs 

with different numbers of nodes. All measures are symmetric, . )1,2(1)2,1(1 GGdGGd 

Comparison of un-normalized distance measures 

Given the graph G, characterize the distances reported by d1, d2, and d3 for a series of 

graphs G1–G9 based on an un-normalized Laplacian matrix. 

Distance measure d3 is unusable since several of the graphs are misreported as being 

similar. Distance measure d1 distinguishes between G1, G2, and G3 while d2 treats them 

identically, likewise with G4 and G5. G6 appears the same using either d1 or d2 as desired. 

Any discrepancy between the two measures should occur when comparing graphs with 

different number of edges, with d2 being insensitive to differences in the number of 

unconnected nodes. If the desire is to have unconnected nodes affects the distance, then d1 

appears the natural choice, but it seems intuitive that d1 is comparing objects of lower 

dimension in higher dimensional space, which may not be valid. All the distance measures, 

unfortunately, will indicate two graphs are identical regardless of the number of nodes if 

there are no edges. Neither d1 nor d2 scored G4 and G5 in desirable manner. Both only have 

a single edge, but G5 at least has a closer number of nodes to G, yet it is assigned a worse 

score. However, d2 scored both G4 and G5 identically instead of scoring G4 with a better 

score as d1 did. The progression of graphs demonstrated by G7, G8, and G9 also demonstrate 

now d1 inappropriately scores smaller graphs with smaller relative scores compared with the 

larger graphs. However, d2 shows an improving score as the graph is enlarged. 
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G:   

  d1 d2 d3 

G1  7.1 10 0 

G2  8.7 10 0 

G3  10 10 0 

G4 

 

5.8 9.2 3 

G5 

 

9.2 9.2 3 

G6 

 

8.4 8.4 4.5 

G7 

 

6.7 8.4 4.5 

G8 

 

8.2 8.2 4.2 

G9 

 

8.2 8.2 4.2 

Table 6.5: Comparison of un-normalized distance measures 

Comparison of normalized distance measures 

Given the graph G, characterize the distances reported by d1, d2, and d3 for a series of 

graphs G1–G9 based on a normalized Laplacian matrix. 

As mentioned previously, the eigenvalues of the normalized Laplacian matrix are in the 

range [0, 2], which can be used to place an upper bound on the distance measure ( n2 , 

where n is the number of eigenvalue pairs used in the calculation). The distance measures 

applied to normalized Laplcian matrices follow the same trends as seen with un-normalized 

Laplacian matrices. The only discrepancy is seen with d2n and d3n applied to G7, G8, and 

G9. While d2(G,G7) > d2(G,G8) as desired, unfortunately d2n(G,G7) < d2n(G,G8). In this 
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particular case the distances associated with G8 are likely larger due to smaller degree 

vertices and thus smaller scaling factors when compared with G7. 

G:   

   d1n d2n d3n

G1  1.8 2.5 0 

G2  2.2 2.5 0 

G3  2.5 2.5 0 

G4 

 

1.5 2.3 0.75 

G5 

 

2.3 2.3 0.75 

G6 

 

1.9 1.9 0.79 

G7 

 

1.5 1.9 0.79 

G8 2.1 2.1 1.1 

 

G9 2.1 2.1 1.1 

 

Table 6.6: Comparison of normalized distance measures 

The distance measures based on the normalized Laplacian matrix seem counterintuitive. 

Given the collection of the graphs presented on the following pages, one would expect that 

the graphs that G1 and G51 would be most dissimilar which is what d2 indicates (d2 = 10.0). 

However d2n reports G1 and G25 are the most dissimilar (d2n = 3.0). 

G1: G51:  G25:     
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Conclusion of distance measure comparison 

It would seem that d2 is the best distance measure presented here. The use of a 

normalized Laplacian, while beneficial by setting an upper limit on the distance, does not 

appear to rank graphs in an expected way.  

Subtleties of the d2 distance measure 

Comparison of the most similar graphs of those generated is not very interesting since 

these have no edges and therefore have only zeroes for eigenvalues and thus d1 = d2 = d3 = 

0. However, it is interesting for non-degenerate graphs to consider the most similar graphs. In 

the table below d2 is reported for all pairs of six graphs. When trying to find most similar 

graphs it may be necessary to compare in both directions for validation. For instance, if graph 

A is found to be most similar to graph B in a set of graphs, it might be informative to identify 

which graph is most similar to graph B. 

 

  

  

  

 

0.00 1.05 1.23 2.16 2.07 1.10 

 

1.05 0.00 0.88 1.18 1.16 0.75 

 

1.23 0.88 0.00 1.41 1.42 0.77 

 

2.16 1.18 1.41 0.00 1.18 1.61 

 

2.07 1.16 1.42 1.18 0.00 1.15 

 

1.10 0.75 0.76 1.61 1.15 0.00 

Table 6.7: Comparison of un-normalized distance measures 
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Identification of Alternative Switch Topologies 
Using the GenoFIT, a search was performed to find alternative toggle switch topologies. 

Of the 220 independent runs of at most 30 generations, below are the eight successfully 

evolved topologies that exhibit the toggle switch phenotype. Each of these topologies has 

been pruned to be minimal (no further block can be removed without destroying the desired 

phenotype): 

 
Figure 6.35: Toggle switch model S1 

 

 
Figure 6.36: Toggle switch model S2 
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Figure 6.37: Toggle switch model S3 

 

 
Figure 6.38: Toggle switch model S4 

 

 
Figure 6.39: Toggle switch model S5 
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Figure 6.40: Toggle switch model S6 

 
Figure 6.41: Toggle switch model S7 

 

 
Figure 6.42: Toggle switch model S8 

To identify unique networks, the d2 graph similarity metric was applied to build the 

following Table 6.8. Using this information, we are able to quickly identify toggle switches 

S5 (Figure 6.39), S6 (Figure 6.40), and S8 (Figure 6.42) as potential duplicates. In examining 

these network models we find that indeed they are duplicates and two can be discarded.  
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After performing the pruning of identical networks we are left with six unique network 

topologies that exhibit the toggle switch phenotype. If one was presented with a new system 

that exhibited this behavior, but they lacked sufficient knowledge of the actual topology, 

these possibilities may be used to guide their experiments either confirming or contradicting 

the suggestions. We have demonstrated the non-uniqueness of topology on the toggle switch 

example, but this approach could be applied to any other phenotype of interest. 

 

 S1 S2 S3 S4 S5 S6 S7 S8 
S1 0 2.726 2.072 2.533 2.533 2.533 1.063 2.533 
S2 2.726 0 1.345 4.432 4.432 4.432 2.372 4.432 
S3 2.072 1.345 0 3.617 3.617 3.617 1.556 3.617 
S4 2.533 4.432 3.617 0 0 0 2.463 0 
S5 2.533 4.432 3.617 0 0 0 2.463 0 
S6 2.533 4.432 3.617 0 0 0 2.463 0 
S7 1.063 2.372 1.556 2.463 2.463 2.463 0 2.463 

S8 2.533 4.432 3.617 0 0 0 2.463 0 
Table 6.8: Similarities between toggle switch models 

GenoFIT parameter file 
Below the GenoFIT parameter file for the toggle switch model considered in the text. 

 

Network file: toggle.net 
 
Population size: 100 
# Must be even number if using 2pt crossover 
 
Client-server mode: false 
# Must be true or false 
 
Work-unit size: 100 
# The number of individuals sent to each client 
 
#Master Address: 170.54.124.31 
Master Address: 10.56.0.4 
# The address of the machine that is responsible for dividing up work 
 
Maximize fitness function: false 
# Must be true or false 
 
Elitism: true 
# Ensure best individual survives - Must be true / false 
 
Replace failures: true 
# Replace any individual whose fitness could not be computed 
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# with a new random individual - Must be true / false 
 
Simplex size: 1 
# The number of top individuals to perform local area optimization on 
# using the simplex algorithm.  x<=0 => disable 
 
Time limit type: Timer 
# The interpretation of the time limit placed on generation - Must be None 
/ Iteration / Timer 
# If limit type = Iteration => this is the maximum number of iterations 
the simplex will make 
# If limit type = Timer => this is the maximum amount of time the simplex 
method will take 
# If limit type = Timer && CS_Mode => this is the maximum amount of time 
allocated to the  
#                                     generation including GA specific and 
Simplex 
 
Time limit: 60 
# The time limit in either seconds or iterations placed on the generation. 
# See "Time limit type" for more details 
 
Number of generations: -1 
# -1 => never end 
 
Selection pressure: 0.2 
 
Crossover type: NPt 
# Options are None, NPt, TwoPt 
 
Shift mutation range: 0.05 
# Shift values by +- 5% 
 
Save best interval: 1 
Save best prefix: best 
Print population interval: 0 
Print population stats interval: 1 
 
Population identity check interval: 1 
Population identity limit: 0.50 
 
Random seed: -1 
# -1 => generate one 
 
Integer parameters: false 
Parameter ranges: 
# Fields _MUST_ be separated by tabs 
# RxnName Index into param table Rxn Equation Kinetic value 
Trans/Degrad 1::Translation 0 # Gene --> Gene + Protein  
Trans/Degrad 1::Degradation 1 # Protein --> 
Trans/Degrad 2::Translation 2 # Gene --> Gene + Protein 
Trans/Degrad 2::Degradation 3 # Protein --> 
 
# Gene + (Trans. Factor) --> Gene:TF  
Promoted Trans 1::Complex Formation 4  
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# Gene:TF --> Gene + (Trans. Factor) 
Promoted Trans 1::Complex Disassociation 5 
 
# Gene:TF --> Gene:TF + Protein  
Promoted Trans 1::Translation 6   
 
# (Protein A) + (Protein B) --> A:B 
Complex Formation 1::Complex Formation 7 
 
Complex Formation 1::Degradation 8  # A:B --> 
 
Rxn 1 9  # (CV 1) --> P1 
Rxn 2 9  # (CV 2) --> P2 
 
# Parameters 
# Param Index Min Max   -or- 
# Param Index Fixed Value 
0 0.001 10 # 0.034376 
1 0.001 10 # 0.238531 
2 0.001 10 # 0.140899 
3 0.001 10 # 0.058583 
4 0.001 10 # 0.437839 
5 0.001 10 # 0.492626 
6 0.001 10 # 0.983715 
7 0.001 10 # 0.985091 
8 0.001 10 # 0.224507 
9 0.3  # 0.300000  
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Chapter 7. Modeling the Guet library of networks 

 

Abstract 
In 2002 Guet et al. described the combinatorial construction of a library of synthetic 

networks and characterized their behavior1. The data from this experiment attracted the 

interest of several in systems biology, but little progress has been made to model these 

networks. Since each network is built from a common set of transcription factors and 

promoters, it should be possible to model them with a common framework. Here, we present 

our attempts to model the networks of the Guet library using knowledge of each of the 

components of these networks. Some of the networks can be modeled independently, a few 

can be modeled sharing common motifs, and some simply defy explanation. 

The discussion begins with a description of the library, including components and 

construction approach. These details are necessary to build models that are presented next. 

Results of stochastic optimization of kinetic constants for these models are then presented.  

2. The Experiment of Guet et al. 

Overview 

Published network diagrams make modeling regulatory networks look deceptively 

simple. In practice, most regulation mechanisms are simply not understood well enough to 

accurately model an arbitrary network, a consequence of having limited observations of 

complex interactions between arbitrary elements in an incompletely understood network. 

Guet sought to better understand regulation by removing several of these unknowns through 

construction of a library of artificial gene networks1 containing all possible topologies 

between three of the best understood transcription factors. Each network was then placed in 

four different environments and their response was measured. This exhaustive approach 

provides several new observations, providing data for new insight into regulation and 

demonstrating the diversity of phenotypes possible with just a small number of regulatory 

elements.  
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Transcription factors 

Each network in Guet’s library contains the three prokaryotic transcription factors: LacI2-

4, TetR, and λcI5-7. These three transcription factors are among the most extensively studied 

to date, improving the chance of understanding the resulting networks. 

The transcription factors were modified by the addition of an ssrA tag, a carboxy-

terminal tag that reduces protein stability by allowing certain E. coli proteases to target the 

protein for early destruction8,9. For instance, the half-life of the λ repressor is reduced from 

60 min. to 4 min10. This modification brings protein half-lives closer to that of mRNA, 

reducing the latency of regulation, and helps to avoid toxic affects due to over-expression. 

Promoters 

Promoters, specific to the three transcription factors, regulate the expression of the 

transcription factors. Each network is built using combinatorial fusion polymerase chain 

reaction (fusion PCR) from five available promoters (the same promoter might be used 

multiple times in the same network). LacI repressed two of the promoters and TetR repressed 

another. The remaining two promoters were regulated by λcI, one positively and the other 

negatively. A promoter also controlled expression of the reporter green fluorescent protein 

(GFP)11, and that promoter was constant for all networks. These promoters were mutant 

forms engineered in previous studies to enhance the effects of regulation12,13. 

Controlling the expression of the three transcription factors are five promoters listed in 

Table 7.1. Several of the promoters used had mutations to enhance their regulatory control.  

Reporting 

Through the presence or absence of IPTG (an inhibitor of LacI) and aTc (an inhibitor of 

TetR) four different environments are created to observe the response of the network. The 

colony is assumed to reach steady state by growing overnight. The phenotype of the network 

is measured through GFP fluorescence. The particular GFP gene is a mutant variety called 

gfpmut3 which has increased half-life and 20-fold greater florescence than the wild-type14,15. 

 

Guet's name Model's names Function Specific name Reference 

 



130 

L
1P  PL1 Repressed by LacI PLlacO1 12 

L
2P  PL2 Repressed by LacI Poid70.5 13 

TP  PT Repressed by TetR PLtetO1 12 

λ
+P  PL+ Positively regulated by λcI PRM + or3-r3 mutation  

λ
-P  PL- Negatively regulated by λcI PR  

Table 7.1: Name and behavior of promoters 

Plasmid construction 

Guet’s library is constructed using a modular cloning strategy. There are five promoters 

and three transcription factors that are arranged to form each of the possible 125 networks. In 

addition, genetic support elements insure that each promoter affects the expression of only a 

single downstream gene and that transcription stops promptly, yielding mRNA for only one 

gene. To construct each of the networks by hand would be too laborious. Instead Guet 

developed a clever technique to build all possible networks simultaneously through directed 

combinatorial ligation of promoters and transcription factors.  

In the initial constructs, a trailing ribosomal binding site (RBS) follows each of the five 

promoters and leads each of the three transcription factors. In addition, a T1 termination site, 

an intrinsic terminator that does not require a rho factor, follows the transcription factor. T1 

has also been called an attenuator of transcription or a partial terminator which suggests that 

its termination can be controlled and is not guaranteed. Rho dependent termination uses rho 

to force dissociation of the RNA polymerase from the DNA once the polymerase pauses at a 

termination site due to the formation of a hairpin RNA structure. Without successful 

termination, a promoter may affect regulation of genes downstream from the gene associated 

with the promoter (Figure 7.1). Please note in the following figures that 

 L L T λ λ
i 1 2 + -P P ,P ,P ,P ,P  and  jTF , ,LacI cI TetR . 

RBSPi

  
TFj T1RBS

 
Figure 7.1: Promoter and transcription fragments 

 



131 

Next, portions of each of the promoter fragments, including a forward primer that 

contains a Bgl I restriction enzyme site, are amplified, as is the transcription factor fragment, 

including a reverse primer containing a Bgl I restriction site (figure 7.2). The specific 

sequence used for the Bgl I sites depends on the associated transcription factor. This is 

further explained below. 

Bgl IP-TFj RBSPi

  
Bgl ITF-TFj

TFj T1RBS

 
Figure 7.2 

Now, a mixture of the transcription factor construct and the five associated promoter 

constructs is created and the dsDNA is denatured (Figure 7.3). 

Bgl IP-TFj RBSPi    
Bgl ITF-TFjTFj T1RBS

 
Bgl IP-TFj RBSPi

  
Bgl ITF-TFjTFj T1RBS

 
Figure 7.3 

During the annealing stage, the RBS site acts as a common tag to ligate the promoter 

fragment with the transcription factor fragment (Figure 7.4). 

Bgl ITF-TFjTFj T1RBSBgl IP-TFj RBSPi

 
Bgl ITF-TFjTFj T1Bgl IP-TFj RBSPi

RBS

 
Figure 7.4 

Ligation is followed with an amplification step to clean up the dsDNA creating a mixture 

of five different promoter:transcription factor constructs with flanking restriction sites 

(Figure 7.5). These steps are done for each of the three transcription factors independently, 

resulting in each of the possible promoter:transcription factor gene pairings. 

Bgl ITF-TFj
Bgl IP-TFj TFj T1RBSPi

 
Figure 7.5 

Now, we must return to the specifics of the Bgl I restriction enzyme. Bgl I cleaves 

dsDNA in the following way, where N represents an indiscriminate site that can be occupied 

by any nucleotide (Figures 7.6 and 7.7). 
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GCCNNNNNGGC
CGGNNNNNCCG

 
Figure 7.6 

GCCN
CGGNNNN

NNNNGGC
NCCG

 
Figure 7.7: After addition of Bg1 I restriction enzyme 

The overhanging sections are characteristic of a restriction enzyme that leaves sticky 

ends, with the sticky ends forming specific tags since Bgl I ignores these nucleotides. These 

sticky ends are used in a later step to enforce a particular arrangement of the 

promoter:transcription factor pairs and insertion into a plasmid. The ordering is achieved 

through neighboring promoter:transcription factor constructs having complementary sticky 

tags (Figure 7.8). 

 

 

 
Figure 7.8 

The final phase in the library creation ligates together the three promoter:transcription 

factor pairs. A mixture of all the promoter:transcription factor pairs is created and Bgl I 

restriction enzyme added producing sticky ends. The mixture contains the following 

fragments in addition to several smaller fragments from the restriction enzyme (Figure 7.9). 

LacI T1RBSPi
GCCNGGC

CGGNTTCNCCG
GCCN

 

?cI T1RBSPj
AAGNGGC

CGGNGTGNCCG

GCCN

 

TetR T1RBSPk
CACNGGC

CGGNTCGNCCG
GCCN

 
Figure 7.9 
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The dsDNA fragments ligate together in an order enforced by complementation of the 

sticky ends. 

LacI T1RBSPi
?cI T1RBSPj TetR T1RBSPk

GCCNGGC
CGGNTTCNCCG
GCCNAAGNGGC

CGGNGTGNCCG
GCCNCACNGGC

CGGNTCG
GCCN

NCCG  
Figure 7.10 

This full length strand is then ligated into an expression vector and cloned into plasmids. 

The plasmids are designed to have Dra III sites (cacnnn/gtg) around the sacrificial kanR 

gene. These Dra III sites are designed such that after digestion there are sticky ends 

compatible with the ends of the promoter-gene constructs. The digested plasmid has the 

structure -gfpmut3-T1-SC101*-bla. SC101* is the origin of replication. The bla gene 

confers ampicillin resistance to the host and can be used to purify the colony. It is likely that 

more than one plasmid was introduced into each cell. 

λ
-P

E. coli Strains 

Each network is inserted into two different E. coli strains: CMW101 and DH10B. These 

strains differ by the presence of a wild-type lacI gene, with CMW101 being lacI- and DH10B 

being lacI+. Both strains are tetR-. Data for two networks D038 and D052 is available for 

both strains. However, only lacI- (strain CMW101) data are available for the other networks. 

As one would expect, the data do demonstrate a significant difference between GFP 

expression for the same network in different strains.  

An assumption that the lacI- mutant did not affect the other components of the lac operon 

has been made here regarding CMW101, i.e. lacZ (β-galactosidase), lacY (the permease), 

and lacA (transacetylase). Since LacI is a trans-acting transcription factor, its presence on the 

plasmid will also regulate of the lac operon on the host chromosome. 

The CMW101 strain uses MC1061 as a base and transduction is with bactriophage P1. 

Guet’s paper indicates specifically “transduction of a recA::cam marker from CLC90.” We 

assume this means that a section of DNA from CLC90 is inserted into MC1061 that includes 

the recA gene (the product of which is an enzyme that encourages recombination events and 

is used to displace homolog sequences), a cam gene to provide chloramphenicol resistance to 

select transformed cells, and a lacI mutant.  
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Environments 

The transcription factors LacI and TetR can be inhibited by isopropyl β-D-

thiogalactopyranside (IPTG) and anhydrotetracycline (aTc), respectively. These inducers 

bind to LacI and TetR changing the conformational state of the protein and preventing 

binding to their respective promoters. By controlling the presence or absence of IPTG and 

aTc, the E. coli colonies can be in four distinct environments (IPTG-/aTc-, IPTG+/aTc-, 

IPTG-/aTc+, and IPTG+/aTc+ at concentrations of 1mM IPTG and 100 ng/mL aTc). Within 

each environment, the network’s phenotype is determined by measuring GFP florescence. 

Measurements 

Two different types of analysis are performed. The florescence measurement of a colony 

is performed on 30 different networks. FACS (florescence activated cell sorter) data is also 

available for two networks (D038 and D052). FACS data provides a distribution of the 

florescence by measuring the florescence of each cell individually instead of averaging the 

measurements as is done in the other style of experiment. Unfortunately, the actual FACS 

data are not available. 

Topologies 

Any of the five promoters may be associated with each of the three transcription factors, 

with repetition, yielding 53=125 possible networks before mutations. Some of the networks 

will have unconnected components, and this is allowed since the only affect is loss of control 

by one or both inducers. The four environments in which each network is phenotyped and the 

two different E. coli strains in which the plasmids are inserted increase the number of 

possible data points to 125 x 4 x 2=1000. However, genotype and phenotype data for only 30 

networks in one strain across all four environments in triplicate are available. Care must be 

taken with the available data since mutants are included. The effects of mutations include 

phenotypic variation for the same network topology complicating otherwise clean 

experimental data. 
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The construction of these networks was not without error. The constructed plasmids were 

sequenced and mutations in the regulatory elements and gene sequence were noticed. These 

mutations affected the phenotype of the network. 

Limitations 

Guet’s library includes several networks that may exhibit multi-state or oscillatory 

behavior. Most obvious is d123 which has the same structure as the repressilator, a network 

constructed and observed to oscillate in vivo10, and d180, which should exhibit bi-stability16. 

Unfortunately, the GFP florescence measurement method measurement used by Guet 

averages the expression of the total colony and could not have detected these unless the 

expression of the individuals in the colony was in sync. This results in expression data 

missing the presence of interesting dynamics. 

3. Modeling the Guet networks with knowledge 

Overview 

The experiment by Guet et al. provides new insight into how apparently simple 

prokaryotic regulatory mechanisms operate when placed in different network topologies and 

different environments. This exhaustive exercise may fully elucidate the behavior of an entire 

class of network, by phenotyping every network. However, this approach is undesirable if 

one is trying to build a gene network for a specific purpose. The traditional engineering 

approach would be first to design and model the system computationally before the actual 

construction. It is the modeling of these networks that is the goal of this work. 

Guet’s networks were chosen instead of networks of commercial or therapeutic interest 

for the same reason that components of which the networks were constructed were chosen: to 

remove unknowns by starting with a well-understood system. Before tackling complex 

eukaryotic systems comprised of genes of which little is known, a convincing case has to be 

built supporting the efforts of modeling. To do this a system built of well-understood 

elements, having lots of experimental data, and made up of a less complex prokaryotic 

system is ideal. 
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Initial models of each of the thirty networks for which Guet provided expression data for 

have been constructed. These models have been improved as details of mechanisms of the 

transcription factors with the promoters and with the environment (IPTG and aTc) have 

become better understood. 

Several assumptions have been made in the models to reduce their complexity, but also to 

avoid constraining them by introducing incompletely understood mechanisms. The main 

assumptions are 1) the network is independent from the rest of the plasmid and the 

chromosome; 2) the transcription factors and promoters are building blocks shared between 

the networks, with their behavior being constant regardless of context; and 3) time delays for 

transcription and translation were ignored as were effects of mutation. The models of the lac 

operon3, λcI17-19, and gfp20 have been previously described. 

Reactions are explicitly modeled rather than using the restricted Michaelis-Menten 

enzyme rate law, which is common in the literature although questioned21. However, any 

modeling formalism is likely to be inaccurate in some circumstances though. For instance, 

the use of mass-action equations assumes uniform environment and accessibility, not present 

in a cell where physical obstacles limit molecular mobility. 

Limitations 

The choice of mass-action-only equations presents a problem when the exact mechanism 

is not fully understood. In such a case, if differential equations are being manipulated 

directly, such modifications can be easily approximated with a new term. Using only mass-

action equations forces one to find a plausible explanation of the desired term. 

Degradations are modeled as first order reactions – the greater the concentration of the 

molecule or the larger the kinetic parameter the faster the degradation. This ignores the 

limited supply of protease in the cell. Alternatively, degradations can rely on an explicit 

limited pool of protease or approximate this by using a Michaelis-Menten reaction and the 

appropriate value of kmax
20. 

One possible problem with the networks presented here is that there is only a single copy 

of each gene. However, in Guet’s paper there were roughly 15 copies of the plasmid per cell. 
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Example 

What follows is an example of how the knowledge of the various promoters can be used 

to construct a network model, in this particular case one that Guet entitled D038. Represented 

as a graph (Figure 7.11), the network model is composed of edges, representing flow of 

molecules indicated by the direction of the arrow, and nodes, representing molecules or 

reactions. Edges can have weights, shown near the termination of the edge, indicating the 

number of molecules of a particular type moving along this edge. In the Guet models the 

numbers capture whether the molecule is acting alone, as a dimer, or as a tetramer. Molecules 

can only be directly connected to reactions, shown in gray. Transcription/translation 

reactions are labels starting with T1 through T4. The R1 and R2 reactions represent the 

diffusion of IPTG and aTc across the cell membrane. The other reactions model promoters, 

PTa, PTb, PL2, and PL-a, where P stands for promoter, T for TetR, L for LacI, and L- and 

L+ for negative and positive promoters associated with lambda cI. The transcription factors 

and GFP are shown in orange and genes are shown in red. Given that the promoters attenuate 

gene transcription, there are two states for each gene, an on and an off state. The inactive 

form is designated with a trailing capital gX while the active form of the gene has a trailing 

g. LacI and TetR can also be in two states depending on the presence of IPTG and aTc hence 

the two yellow molecules that represent the inhibited forms. Two control variables, the green 

nodes, model external activators aTc and IPTG used to create the four environments. 

 
Figure 7.11: Example of network model 
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The signals of the two control variables are seen in Figure 7.12 as are the corresponding 

concentrations of each of the molecules with each transition and over time. For the D038 

model to have the correct phenotype it must have a high concentration of GFP when aTc is 

high and IPTG is low. In all other environments it must have a low concentration. The graph 

shows that the model exhibits this behavior strongly. To emphasize the relationship between 

the concentrations of the control molecules and GFP, these variables are plotted with respect 

to each other in Figure 7.13. 

 
Figure 7.12: Simulated results of network model 

 
Figure 7.13: Simulated results of network model emphasizing GFP and environment 
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Optimization of individual Guet networks  

Each of the following networks is optimized independently for twenty generations. After 

optimizing each network independently, pairs of networks with solutions identified are 

optimized. This increase in constraints helps to remove incorrect solutions. 

The networks are constructed in two strains, lacI- and lacI+, that differ by the “presence 

of a wild-type copy of the lacI gene at a chromosomal locus.” We focus on the lacI- data 

since the extra copy is controlled by unknown mechanisms. 

It is possible, due to the limited number of optimization iterations applied to each 

network, that the GA component of GenoFIT was insignificant and that most of the 

improvement came through simplex optimization. It would be interesting to perform simplex 

optimization on a large number of random parameter sets and to compare the performance 

with GA+Simplex or even with GA by itself. The simplex method was enabled for this runs 

because it improved the rate of convergence but also because that it improved CPU 

utilization when run in a distributed mode. 

Tables 7.2 and 7.3 below show, for each network, the mean of the experimental 

measurements as well as the values from the best network to result from the model fitting 

process. Subjectively large differences between the experimental and computational results 

are highlighted.  

The “Feedback Present” column indicates if the network contains feedback; if so, it gives 

the minimal number of steps along in the cycle. For example, D012 contains the feedback 

cycle of LacI controlling LamCI which in turn controls LacI, and therefore the number of 

steps is 2. Compare this with D019 in which TetR self regulates and thus the number of steps 

is only 1. A network such as D016 has no feedback involved in the portion controlling GFP 

and therefore all controlling signals are feed-forward. 

Network 
Feedback 
Present Measure Env1 Env2 Env3 Env4 

D012 Y(2) Mean 9799.553 135.4443 384.7536 207.8155 
  Opt 9797.253 270.4756 270.5110 270.4756 
D016 N1 Mean 28855.19 1058.356 769.8561 633.8722 
  Opt 14812.52 846.114 14812.5213 846.1142 
D018 Y(2) Mean 5746.876 4954.329 6977.721 6682.387 

                                                 
1 Feedback is present but on a disconnected section that should have no influence on GFP 

 



140 

  Opt 6090.328 6090.328 6090.328 6090.328 
D019 Y(1) Mean 331.4371 529.6587 10787.62 168.6702 
  Opt 343.2553 343.2553 10787.62 343.2553 
D028 Y(2) Mean 571.3948 658.9516 284.0915 255.054 
  Opt 615.1732 615.1732 269.5727 269.573 
D032 Y(2) Mean 48101.94 1047.139 48895.48 737.5005 
  Opt 48498.71 892.320 48498.71 892.3197 
D038 Y(1) Mean 427.4511 550.8609 13733.83 235.2039 
  Opt 427.4706 393.0426 13733.83 393.0426 
D052 Y(1) Mean 13557.13 467.7863 435.0814 686.2104 
  Opt 7012.46 7012.4552 434.6700 686.3325 
D066 Y(3) Mean 7853.719 1621.622 410.1682 435.9176 
  Opt 4737.332 4737.332 419.3673 428.6299 
D078 Y(3) Mean 102.9218 146.2082 48589.24 407.9522 
  Opt 124.5649 124.5650 48589.24 407.9522 
D090 Y(2) Mean 203.558 162.6739 92.84085 125.2698 
  Opt 148.199 143.9718 148.19943 143.9718 
D101 N2 Mean 38861.47 591.6231 4654.478 885.175 
  Opt 11248.19 11248.1892 11248.189 11245.659 
D104 Y(1) Mean 215.8781 210.1672 234.766 343.5589 
  Opt 251.0925 251.0925 251.093 251.0925 
D113 Y(2) Mean 35163.88 1836.717 38297.85 1125.72 
  Opt 36730.98 1481.107 36730.98 1481.11 
D114 Y(2) Mean 218.8726 276.0236 446.396 416.1289 
  Opt 339.3553 339.3553 339.355 339.3553 
D117 Y(2) Mean 45398.87 46253.63 51533.72 52351.76 
  Opt 48884.32 48884.50 48884.50 48884.50 
D123 Y(3) Mean 653.3381 866.5852 402.461 282.9939 
  Opt 653.5507 866.5706 342.659 342.6601 
D133 Y(2) Mean 43474.82 44461.52 47795.19 53051.28 
  Opt 47195.70 47195.70 47195.70 47195.70 
D135 Y(1) Mean 6088.122 5654.586 5820.305 5765.542 
  Opt 5832.139 5832.139 5832.139 5832.139 
D143 Y(1) Mean 14218.99 14124.03 568.3894 451.3978 
  Opt 14171.51 14171.51 509.8936 509.8936 
D180 Y(2) Mean 47496.43 48890.79 791.2396 885.5921 
  Opt 48090.86 48829.78 1021.5488 1043.0039 
D250 Y(1) Mean 795.7318 296.989 354.3591 182.9879 
  Opt 575.0454 239.988 575.0454 239.9884 
D253 Y(1) Mean 885.4587 799.1516 325.6498 204.3227 
  Opt 553.6457 553.6457 553.6457 553.6457 
C024 Y(1) Mean 13922.28 439.0846 538.8381 345.9892 
  Opt 7229.77 391.9829 7229.7711 391.7693 
C101 Y(3) Mean 176.7035 9121.306 297.036 226.886 
  Opt 233.5376 9121.306 233.538 233.550 

                                                 
2 Feedback is present but on a disconnected section that should have no influence on GFP 
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C103 Y(3) Mean 11305.01 2440.715 818.0481 653.8954 
  Opt 6872.86 6872.862 735.9717 735.9717 
C113 Y(3) Mean 13454.04 1798.284 447.3287 530.8328 
  Opt 7626.22 7626.219 489.1356 489.1523 
C144 Y(1) Mean 31623.44 4857.925 534.1963 656.0131 
  Opt 18240.68 18240.678 534.1875 656.0676 
C195 Y(2) Mean 46271.42 18231.93 68665.37 56802.93 
  Opt 45019.03 37746.30 57351.96 37746.30 
C242 Y(1) Mean 17403.9 715.8412 567.6562 442.334 
  Opt 9059.9 9059.8707 504.9951 504.995 

Table 7.2 

 

Network 
Feedback 
Present Measure Env1 Env2 Env3 Env4 

D012 Y(2) Mean 9800 135 385 208 
  Opt 9797 270 271 270 
  Error -0.02% 99.70% -29.69% 30.15% 
D016 N(2) Mean 28855 1058 770 634 
  Opt 14813 846 14813 846 
  Error -48.67% -20.05% 1824.06% 33.48% 
D018 Y(2) Mean 5747 4954 6978 6682 
  Opt 6090 6090 6090 6090 
  Error 5.98% 22.93% -12.72% -8.86% 
D019 Y(1) Mean 331 530 10788 169 
  Opt 343 343 10788 343 
  Error 3.57% -35.19% 0.00% 103.51% 
D028 Y(2) Mean 571 659 284 255 
  Opt 615 615 270 270 
  Error 7.66% -6.64% -5.11% 5.69% 
D032 Y(2) Mean 48102 1047 48895 738 
  Opt 48499 892 48499 892 
  Error 0.82% -14.78% -0.81% 20.99% 
D038 Y(1) Mean 427 551 13734 235 
  Opt 427 393 13734 393 
  Error 0.00% -28.65% 0.00% 67.11% 
D052 Y(1) Mean 13557 468 435 686 
  Opt 7012 7012 435 686 
  Error -48.27% 1399.07% -0.09% 0.02% 
D066 Y(3) Mean 7854 1622 410 436 
  Opt 4737 4737 419 429 
  Error -39.68% 192.14% 2.24% -1.67% 
D078 Y(3) Mean 103 146 48589 408 
  Opt 125 125 48589 408 
  Error 21.03% -14.80% 0.00% 0.00% 
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D090 Y(2) Mean 204 163 93 125 
  Opt 148 144 148 144 
  Error -27.20% -11.50% 59.63% 14.93% 
D101 N(2) Mean 38861 592 4654 885 
  Opt 11248 11248 11248 11246 
  Error -71.06% 1801.24% 141.66% 1170.44% 
D104 Y(1) Mean 216 210 235 344 
  Opt 251 251 251 251 
  Error 16.31% 19.47% 6.95% -26.91% 
D113 Y(2) Mean 35164 1837 38298 1126 
  Opt 36731 1481 36731 1481 
  Error 4.46% -19.36% -4.09% 31.57% 
D114 Y(2) Mean 219 276 446 416 
  Opt 339 339 339 339 
  Error 55.05% 22.94% -23.98% -18.45% 
D117 Y(2) Mean 45399 46254 51534 52352 
  Opt 48884 48885 48885 48885 
  Error 7.68% 5.69% -5.14% -6.62% 
D123 Y(3) Mean 653 867 402 283 
  Opt 654 867 343 343 
  Error 0.03% 0.00% -14.86% 21.08% 
D133 Y(2) Mean 43475 44462 47795 53051 
  Opt 47196 47196 47196 47196 
  Error 8.56% 6.15% -1.25% -11.04% 
D135 Y(1) Mean 6088 5655 5820 5766 
  Opt 5832 5832 5832 5832 
  Error -4.20% 3.14% 0.20% 1.16% 
D143 Y(1) Mean 14219 14124 568 451 
  Opt 14172 14172 510 510 
  Error -0.33% 0.34% -10.29% 12.96% 
D180 Y(2) Mean 47496 48891 791 886 
  Opt 48091 48830 1022 1043 
  Error 1.25% -0.12% 29.11% 17.77% 
D250 Y(1) Mean 796 297 354 183 
  Opt 575 240 575 240 
  Error -27.73% -19.19% 62.28% 31.15% 
D253 Y(1) Mean 885 799 326 204 
  Opt 554 554 554 554 
  Error -37.47% -30.72% 70.01% 170.97% 
C024 Y(1) Mean 13922 439 539 346 
  Opt 7230 392 7230 392 
  Error -48.07% -10.73% 1241.73% 13.23% 
C101 Y(3) Mean 177 9121 297 227 
  Opt 234 9121 234 234 
  Error 32.16% 0.00% -21.38% 2.94% 
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C103 Y(3) Mean 11305 2441 818 654 
  Opt 6873 6873 736 736 
  Error -39.21% 181.59% -10.03% 12.55% 
C113 Y(3) Mean 13454 1798 447 531 
  Opt 7626 7626 489 489 
  Error -43.32% 324.08% 9.35% -7.85% 
C144 Y(1) Mean 31623 4858 534 656 
  Opt 18241 18241 534 656 
  Error -42.32% 275.48% 0.00% 0.01% 
C195 Y(2) Mean 46271 18232 68665 56803 
  Opt 45019 37746 57352 37746 
  Error -2.71% 107.03% -16.48% -33.55% 
C242 Y(1) Mean 17404 716 568 442 
  Opt 9060 9060 505 505 
  Error -47.94% 1165.63% -11.04% 14.17% 

Table 7.3 

 
Figure 7.14: Reconciliation of three of Guet's networks into a single model 

Figure 7.14 shows a model composed of three independent networks based on shared 

parameters and regulation motifs. Despite its complexity, one can see the main features. Each 

box represents either a reaction (grey boxes) or a molecule (colored boxes). Lines represent 

the flow of molecules with the arrowheads indicating the direction of flow. Molecules 

required by a reaction flow into the reaction box and the reaction product flows out. The 
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structure of this network helps to identify regulation motifs that have appear as vertical 

structures of molecules and reactions. The labels help to identify the individual networks by 

the prefix (e.g. c101, d143, d019) and the label suffixes identify the network component. 

Like suffixes (ignoring the lowercase ‘a’ and ‘b’ that are required only to give each entity a 

unique name) within and between networks identify reactions or molecules with similar 

constraints, i.e. the building blocks.  

Conclusions 
Models of thirty networks from Guet’s library have been created in the modeling 

environment and fitted to the experimental data provided by Guet. While most models do not 

fit well in all environments, at least three of those that could be fitted individually could also 

be reconciled into a single model supporting the possibility of model independence of 

regulation mechanisms. Reviewing the literature surrounding the specific promoters, 

transcription factors, and protocols surrounding the original experiment helped to identify 

inaccuracies in the modeling of certain regulatory mechanisms that could be responsible for 

some of the failures. This work should be revisited from a synthetic view, i.e. disregarding 

the experimental data initially and trying to fit generated data to the models, much like what 

will be done in the characterization phase. This removes the possibility that the model is 

wrong but still allows testing whether regulation motifs can be modeled independently. 

Guet used a combinatorial approach to build artificial networks by treating transcription 

factors and promoters as building blocks in a similar way as this research tests if network 

models can be built using regulation motifs as building blocks. Although the identical 

components may be shared between the various networks in Guet’s library, it does not 

immediately mean that they behave identically regardless of their context. 

The final goal of a single unifying framework is still elusive but hopefully this work 

represents an additional step forward. 
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Appendix 
Introduction: There may be a number of explanations why it was not possible to model 

the dynamics of all of the Guet constructs. Here we will consider possibilities not requiring 

validation of the biological experimental data. 

The method employed in this chapter to measure dynamics of the network models is 

simulation, which relies on numerical integration of ODEs formulated from the model. How 

the ODEs are constructed and how they may be used to perform the simulation are topics 

covered in earlier chapters. This method of simulation is very fast and thus is most often 

employed by modelers. However, there are two major deficiencies with this method: 

numerical stability and solution completeness. 

Numerical integration is implemented using floating point arithmetic. If the integrator is 

not carefully implemented, it will be prone to the compounding influence of seemingly small 
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numerical error. While the integrator used in our experiments, CVODE,  has a long and 

respected history, even high quality integrators can be susceptible to error accumulation. This 

problem is most pronounce when system variables have widely different magnitudes, a 

situation that occurs during simulation of a model containing low copy-number genes and 

high concentration proteins. Numerical integration is a complex subject of applied 

mathematics and thus the best we can do is try to avoid problematic situations. 

When simulating models based on ODEs with a numerical integrator, the final solution is 

dependent on the initial values of the parameters, i.e. the initial concentrations. Viewing a 

model as a function in multidimensional space, there are ranges of values for the parameters 

that will result in the same solution, known as basins of attraction. The simplest models will 

only have a single solution regardless of the initial conditions. However, many models, 

including many of the models of the Guet library, have feedback allowing multimodal 

behavior. Nonlinear dependencies between parameters complicate the identification of 

separate basins of attraction.  

Feedback is common in regulatory network models due to properties such as self and 

mutual regulation. The feedbacks allow the ODEs to potentially have multiple steady states. 

However, numerical integration, given a single set of initial conditions, will only identify one 

steady state. When optimizing the parameters of a model, reporting only a single solution 

may be misleading. Ideally, we need to identify all solutions and compare experimental 

observations to each of these solutions even when there is only a single experimental 

observation. However, to do this the observations must be made supporting this approach. 

The Guet networks clearly have the ability to exhibit multimodal behavior given that 

several have topologies that are similar to toggle-switch and repressor like networks. 

However, the experimental observations used in this chapter were collected from a 

population of cells and averaged over a period of time. Any variation in florescence between 

cells or over time is lost by the averaging. Even with each measurement being made in 

triplicate, since they were made over a population any variation, due to multimodal behavior 

is lost. If the data would have been collected on a cell-by-cell, perhaps it would be possible to 

observe the multi-modal behavior. The population of two networks were examined using a 
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cell sorter and a distribution of florescence was observed. The distribution did not show 

multimodal behavior, but at least one these networks not present difficulty in modeling. 

There is a need to develop methods that can find all steady state solutions of network 

models, but there is a competing need that the solutions be found quickly. Slow generation of 

solutions during modeling building is a nuisance, but slow solution generation will quickly 

make parameter optimization impractical. Stochastic or hybrid optimization methods are 

most often employed, and these methods will test tens of thousands of parameter sets (at 

least). The solution sets of each model must therefore be found very quickly. 

Methods: In Chapter 4 we introduced a method that samples the parameter space of a 

model during optimization to identify multiple steady states. This method could miss some 

solutions if the sampling is not sufficiently fine and can be time consuming. Our 

implementation makes this method impractical for use during optimization. However, there 

are alternatives. Here we describe some methods that we have tried and our impressions. The 

rough idea, with each method is to, within our modeling environment, extract the system of 

equations from the models, manipulate them to be suitable for a particular method, and then 

call on an external package to find the actual solution.  

The equations in the systems of ODEs used throughout this dissertation have consisted of 

polynomials of second degree. Each term in the polynomial consists of at least one variable. 

Many of these equations, but not all, can be solved by Mathematica directly. For example, 

take network S1, a toggle switch, considered in Chapter 6 (Figure 7.15). This network is 

designed to have bimodal behavior but this is completely hidden by simulation. Finding the 

steady state solution of this model using Mathematica requires exporting the ODEs and 

finding where all the ODEs, derivatives of species concentrations, are zero (Figure 7.16), 

which by definition is a steady state.  

Complicating solving the ODEs for steady state solutions is the fact that the equations are 

not entirely independent. This happens due to mass conservation of certain species. For 

example, a gene network will conserve abundance of genes. While the protein concentration 

is free to change, gene copy number is normally not. However, genes may change between 

various states, such as inhibited and uninhibited, but the total count does not change. To 
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express this, mass conservation terms are necessary. These are shown in Figure 7.16 as 

bolded terms. 

 
Figure 7.15: Toggle switch model S1 

k1 = 0.106696; 
k2 = 0.15061; 
k3 = 0.328247; 
k4 = 0.0666803; 
k5 = 0.939691; 
k6 = 0.862253; 
k7 = 0.968658; 
k8 = 0.655576; 
k9 = 0.0256774; 
k10 = 0.369641; 
k11 = 0.983843; 
k12 = 0.416003; 
pa = -k5*a*A+k6*cp1; 
pA = -k2*A-k5*a*A-k8*A*B+k1*a+k6*cp1+k7*cp1; 
pb = -k10*b*B+k11*cp2; 
pB = -k4*B-k8*A*B-k10*b*B+k3*b+k11*cp2+k12*cp2; 
pcp1 = -k6*cp1+k5*a*A; 
pC = -k9*C+k8*A*B; 
pcp2 = -k11*cp2+k10*b*B; 
Chop[TableForm[NSolve[{a+cp1==1, b+cp2==1, pa == 0, pA == 0, pb == 0, pB 
== 0, pcp1 == 0, pC == 0, pcp2 == 0}, 
{a, A, b, B, cp1, C, cp2}]]] 

Figure 7.16: Mathematica code to solve S1 

Mathematica is able to quickly locate the steady states (Figure 7.17), but not all of them 

are realistic. Solutions involving negative or imaginary terms have no physical interpretation 

and must be discarded. This example shows how a simple network, which would only exhibit 

a single steady state through simulation from many initial conditions, has three steady states: 
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two corresponding to the bimodal states of the toggle-switch and one corresponding to an 

unstable steady state separating the two stable ones. Mathematica has located all solutions. 

{a = -1.69872, A = -1.45776, b = -23.3759, B = -2.77548, cp1 = 2.69872, C = 
103.299, cp2 = 24.3759},  
{a = 1.05387, A = -0.0469053, b = 5.63688, B = -2.18944, cp1 = -0.0538716, 
C = 2.62196, cp2 = -4.63688},  
{a = 0.238771, A = 2.92539, b = 0.940617, B = 0.168032, cp1 = 0.761229, C = 
12.5501, cp2 = 0.0593825},  
{a = 0.775587, A = 0.265502, b = 0.640395, B = 1.4946, cp1 = 0.224413, C = 
10.1313, cp2 = 0.359605},  
{a = 0.923089, A = 0.0764527, b = 0.452397, B = 3.22174, cp1 = 0.0769107, C 
= 6.28863, cp2 = 0.547603} 

Figure 7.17: Mathematica solutions to S1 

To implement a tight connection to Mathematica, it is necessary to identify the mass 

conservation relationships. This may be possible through analysis of the network model. 

However, an alterative is to require the modeler to specify the type of each specie and then 

apply specie type specific rules to construct the mass conservation rules.  

When performing stochastic optimizations the optimization time can be greatly reduced 

by using a cluster of machines. However, using Mathematica as the solver would require a 

license for each machine, which may be prohibitively expensive. Given the commercial 

licensing of Mathematica one may want to consider alternatives.  

Internally, Mathematica is likely using Groebner basis. Another tool, Reduce, is 

considered by many to contain the most sophisticated algorithms for Groebner basis and 

solving systems of equations. While not as fast as Mathematica, source code is available for 

Reduce allowing tighter integration, and its license is much more flexible. 

The methods discussed so far find multiple solutions but they do little to help with the 

possibility of numerical error. Mathematica, specializing in symbolic manipulation,  may be 

less prone to floating point error, but the model constants are expressed as floating point 

values and this may trigger Mathematica to use numerical methods. Expressing the constants 

as rational numbers may help. 

An alternative is to use interval arithmetic methods. Unlike floating point arithmetic, 

which can only represent a finite number of infinitesimal points, interval methods operate 

using intervals of values. This allows floating point error to be explicitly captured as an 

expansion of the interval. Functions may also be implemented using interval methods. A 

Newton method implemented using interval methods has the amazing property of being able 
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to find all solutions to a system of equations along with error bounds on the solutions 

affectively solving both problems inherent with simulation. 

GLOBSOL is a well known interval analysis package that implements a Newton method. 

The same requirements are placed on the modeling environment when exporting a system of 

equations to GLOBSOL as with Mathematica. GLOBSOL is a slower than Mathematica in 

some cases, but still has good performance. GLOBSOL has the least restrictive license of the 

packages considered here and is available freely, including source code, from its author who 

continues to develop it. Interval methods are slower than point methods because, at the very 

least, the interval has to be tested at both extremes of each interval instead of only a single 

point. However, this is a simple view of interval arithmetic and many additional operations 

are necessary to maintain tight intervals and correctness throughout the calculations. 

Finally, stochastic simulation can also help avoid problems with the traditional 

simulation. Traditional simulation uses a numerical integrator and thus is susceptible to 

numerical error and is deterministic. The determinism guarantees that the same steady state 

will be located for a given set of initial conditions, regardless of the number of possible 

steady states. Floating point error is not a problem with stochastic simulation because each 

specie has an integer concentration. This also provides a more physically realistic 

interpretation to the concentration results and greatly simplifies implementation. In fact, 

implementation of the Gillespie method can be done in perhaps 100 lines of code and 

requires no advanced mathematics. Multiple steady states are exposed during stochastic 

simulation because even though the simulation begins from a point of initial concentrations, 

there is always some probability of the system transition to another state, even in steady state.  

With the benefits of stochastic simulation there are disadvantages. Stochastic simulations 

require ensembles of trajectories, perhaps tens of thousands, to be constructed. Each 

trajectory is independent of each other so parallel hardware can help, but it is still time 

consuming. Also, because stochastic simulation is still a simulation, there is still some 

dependence on initial conditions. It is conceivable that certain steady states may be difficult 

to reach from some initial conditions. Without knowledge of the number of steady states, it 

becomes difficult to know if sufficient simulation has been performed. Also, interpretation of 

the simulation results is not so clear. Given a transition may occur anytime, it is unclear when 
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steady state has been reached. It is also unclear how to go about identifying the steady states 

from the distributions of trajectory ensembles. 

Conclusions: If modeling of biochemical networks, such as regulatory networks, is to 

become a viable part of synthetic biology, foundational methods must be developed that 

allow the dynamics of networks to be fully observed in the presence of multiple steady states. 

In addition, methods must be unsusceptible or highly resistant to numerical error. To allow 

optimization, these methods must be fast. Parameter optimization places a large demand on 

any method. However, allowing the topology to also be altered during optimization increases 

the degrees of freedom and the demands grow considerably. We have examined a few 

methods that are available now and hope that others will identify and develop other methods 

to replace traditional simulation. 
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Chapter 8. General conclusions 

Overview 
The benefits of modeling are well recognized throughout engineering. Most systems 

constructed by people today are simply too complex to fully understand in all situations. The 

disciplines of systems biology, genetic engineering, and synthetic biology have been 

influenced by the engineering approach, and as such, as they mature these fields will also 

benefit from modeling. However, biological systems may prove to be more complicated and 

so there is an urgent need for advancement of methods for modeling biological systems. 

This dissertation chronicles one group's attempt to apply modeling methods to improve 

their understanding of genotype to phenotype mapping as well as to identify new constructs 

for synthetic biology. When we began, there was little existing work to leverage, so we 

started at foundational levels: characterizing a formalism, developing a modeling 

environment and optimization methods, and applying these methods to several independent 

problems. 

Accomplishments 
Throughout this dissertation, we have advanced a framework for modeling biochemical 

constructs with the goal of aiding synthetic biology. Starting with a mathematical formalism 

of mass-action reactions and showing its application to networks of DNA and proteins, we 

built the GenoDYN modeling environment. Our modeling environment differs from others 

by relying on hierarchical modeling to compose existing constructs into more complicated 

and sophisticated ones. This makes GenoDYN extensible in general and practical for models 

with considerable replication, such as explicit modeling of individual cells in a population. 

The extensibility is demonstrated by deriving a new modeling tool that focuses on Petri 

networks instead of mass-action reactions. 

Model fitting is particularly important. It is the main method of finding parameters to 

make the model consistent with observations. We designed a method of searching a model's 

parameter space by recursive partitioning. While impractical for large models, this method 

was published and is important for evaluating subsequent techniques. 
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To demonstrate the applicability of this work to genotype-to-phenotype maps and 

breeding programs, we subjected a population containing our model of the yeast galactose 

switch  to selective pressure. The results of this paper concluded that genes are context 

dependent and so it is impossible to select the best allele for a particular gene independent of 

interacting genes. This has strong implications to a mature breeding program that has likely 

lost alleles that may be optimal in different contexts. 

More recent exploratory results appear in the last chapters. Using networks constructed 

and characterized by Guet et al., we attempt to reconcile a dataset of network topologies and 

experimental measurements into a collection of network models sharing common motifs. 

Many of the networks are successfully modeled, but not all of them. Given the 

inconsistencies observed in the experimental results, the constructs that could not be modeled 

may have sequencing errors or the impact of multiple equilibria may not be fully appreciated. 

Given the difficulty of modeling the Guet networks, we introduce an additional method 

that increases the degrees of freedom during model fitting. Now the topology is allowed to 

change in addition to the model parameters. Effectively, we evolve a network model given a 

description of the desired phenotype. With the increase in degrees of freedom also comes an 

increase in the computational requirement satisfied by clusters of computers. The unique 

models produced by this system are interesting to study for alternative solutions. For 

networks without models, the evolved networks can provide inspiration for new models. 

Future directions 
The next step in the continuation of this research, which may be quickest to obtain, is 

solving the problems of multiple equilibria. Continuous simulation is used throughout this 

dissertation because of its performance, however its limitations require one to be careful not 

to be misled. Relying on continuous simulation will, at best, result in an incomplete 

understanding of the dynamics of the model. In particular, continuous simulation is 

dependent on initial conditions and will only identify one of possibly many equilibria. This is 

particularly troublesome when trying to fit a model since only one steady state is examined, 

potentially the incorrect one. 
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Possible alternatives to continuous simulation include directly solving the system of 

equations, stochastic simulation, and interval analysis based Newton methods. However, 

these methods are not entirely equivalent. It is difficult to know when enough stochastic 

simulation has been performed, and as a simulation it is still biased by initial conditions. 

Directly solving the equations and interval methods are the most thorough methods and may 

be the best candidates for replacing continuous simulation. While these methods may not 

yield trajectories, in most situations trajectories are uninteresting because the initial 

conditions do not realistically represent any particular state of an individual cell. 

After enumerating multiple equilibria, the next area requiring research is optimization 

and model fitting. Stochastic optimization, such as genetic algorithms, is typically used when 

little is known about the problem. However, the quality of the outcome of stochastic 

optimization is not guaranteed. Again, interval methods may help. Beyond treating the model 

fitter as a black-box, perhaps structure in the problem will allow improvements in the 

optimization methods. 

The Guet et al. dataset is an impressive piece of work and deserves a more thorough 

characterization. Reproducing these constructs, characterizing each construct, and releasing 

the data to the public would be a huge contribution to synthetic biology and to those 

developing modeling methods. It is important that the constructs be characterized in such a 

way to measure if multiple equilibria are present. It is unclear why Guet did not perform 

these measurements originally. Perhaps it was due to expense at the time or because he did 

not know how influential the dataset would become. Key datasets such as an improved Guet-

like dataset will be vital for developing and benchmarking new methods and can be done 

independently of the previous suggestions for future work. 

Final thoughts 
Modeling of the actual cellular processes for engineering purposes is a relatively new 

activity. It is impossible not to acknowledge the impact that engineering, based on the 

physical sciences, has had on the modern world. If ethically approached, engineering based 

on the life sciences may ultimately have a larger beneficial impact.
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Appendix A. PPN: A Petri Net simulation tool 

Preface 
Chapter 3 of this dissertation describes a modeling environment that is instrumental in 

the development of the subsequent chapters. Originally called PNE, for Pioneer Network 

Editor, reflecting the sponsorship of Pioneer Hi-Bred during its development, and later 

renamed as GenoDYN to complement a coauthor’s existing tool, GenoCAD, this package 

is actually more than a single tool, but is a framework, allowing entirely new modeling 

environments to be created. In this appendix we describe one such extension, PPN, for 

modeling Petri nets. Much of the graphical framework is reused, but the simulation 

engine is completely new. The description of the simulation engine may also help those 

with similar interests, since such implementation details are rare. 

Introduction 
Petri nets1 have been used to model systems in a wide range of fields including 

dependability, communication, music2, and biology3,4. The broad acceptance of Petri nets 

likely has a lot to do with the understandable discrete nature of Petri nets and their 

amenability to accommodate application in new fields. Here we present a new Petri net 

modeling environment that is meant to be generic. While the field of Petri net modeling 

environments is a crowded one, we believe that our application has novel features 

including hierarchical structures of complex models. Our system is made more generic by 

being able to simulate models that contain any number of both deterministic and 

stochastic transitions. 

Methods 
In this section we describe several of the key features of PPN and the implementation 

of these features. To ensure maximum performance, PPN is implemented in C++. To 

increase portability to other operating systems, including Microsoft Windows, Linux, and 

Mac OS/X, the Trolltech’s Qt widget set underlies the GUI. Where possible, operating 

system specific functions, such as thread management and network communication, have 

been implemented using Qt to increase portability. 
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Modeling environment 

PPN presents a canvas on which networks may be drawn using a combination of 

nodes and edges (Figure A.1). The PPN canvas appears similar to other visual Petri net 

modeling tools, but there are differences in how networks are presented. Places and 

transitions are rectangles instead of the traditional circles, the names are contained within 

the places and transitions, and places display their token count below their name. 

 
Figure A.1: PPN screenshot 

Perhaps unique to PPN is the ability to model networks hierarchically using 

subnetworks. A subnetwork is a network motif that is encapsulated and referenced by a 

higher level network. Places that are exported from the subnetwork are exposed to the 

higher level network where they can be tied to other places. Subnetworks offer a 

convenient way to compartmentalize a repetitive motif of a network. By abstracting the 

motif, it becomes possible to simplify the appearance of the design and reuse components 

 



158 

in other networks. A new instance of a subnetwork is created when it is copied, and 

modification of the copy only affects the copy. 

Hybrid simulation algorithm 

Both places and transitions have single values associated with them. The value 

associated with a place represents the number of tokens present in the place. While the 

value associated with transitions represent the expected waiting time. Transitions come in 

two flavors in PPN, deterministic and stochastic. With deterministic transitions, the value 

can be considered a time delay. Once a transition is ready, because all the required tokens 

are available, the transition will delay by the specified waiting time. Stochastic transitions 

are similar, although the actual time delay is sampled from an exponential distribution 

centered about the waiting time. Below are the main algorithm steps. 

Step 1: Initialize a state vector, state. The state vector contains, for each place, the current 

number of tokens present. The required initialization simply requires copying the 

token values from each place present in the model. 

Step 2: Initialize results matrix, results, that contains a copy of the state for each sampled 

time point. The sampling rate could be different from the actual transition rate, 

but to best observe the dynamics of a model, the sample rate should be twice that 

of the fastest transition.  

Step 3: Initialize deadline vector, deadline. For each transition there is an associated time 

at which the transition may actually occur. The initialize is performed by filling 

the vector with the values of t0 plus the transition specific delay. 

Step 4: While t ≤ tend perform the following steps: 

Step a: For each of the transitions trans, check to see if deadlinetrans < t. If so, add 

trans to a list of ready transitions, ready. 

Step b: Randomize ready, which is necessary for deterministic models with race 

conditions. Without this step, transitions that are regularly ready at the 

same time would always fire in the same order. 
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Step c: For each of the trans  ready, check to see if trans can still occur by 

checking if the required tokens are available and inhibitory tokens are not 

present. If so, update state based on the movement of tokens. To update 

state, decrement the source places by the number of tokens taken and 

increment the destination places with the number of tokens generated.  

Step d: Update deadline with times relative to t when transitions that can occur 

should be attempted. 

Step e: Examine deadline and find the time the next transition will occur, tnext. Set 

t = tnext. If no transition is scheduled to occur then set t = tend. This step 

allows the simulation to jump to the next time point of interest without 

examining intermediate times where no events occur. 

Step f: As needed, based on the sampling rate and t, update results matrix by 

copying results from the state vector into the results vector. 

Generation of results 

When simulating strictly deterministic Petri nets, the results will be the same with 

each simulation. However, if there is any non-determinism present in the model, such as 

with race conditions or if the model has stochastic transitions, the results may change 

with each simulation. In such a case, each simulation represents only a single trajectory 

that the system could take and is of little independent value. However, combine several 

trajectories and the breadth of the system dynamics is exposed. 

Presentation of results 

The graphs produced by PPN visualize the ensemble of trajectories, but there are 

currently no metrics for summarizing the results. However, results can be exported for 

analysis in statistical packages. 

The graphs are generated using a modified version of the Qwt graphing package for 

Qt. The main differences include the addition of a novel histogram representation and 

context menus for controlling common activities for each graph. 
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If a simulation results in only a single trajectory, the graph will be familiar line plots 

representing the token count of each place during the simulation. However, if a 

simulation generates an ensemble of trajectories, then a 3D histogram is presented. In the 

histogram, time and token count are still represented along the horizontal and vertical 

axes respectively. However, there are also vertical bins for each time point, with each bin 

assigned a color depending on its relative count. Cooler blue colors represent low values 

and warmer red colors represent high values. The mean is superimposed as a line plot. 

By viewing the histogram plot of a large number of simulations, it becomes possible 

to find if a model exhibits rare and unexpected multi-model behavior. For instance, 

perhaps a system fails only rarely. The difference between the correctly functioning state 

and the failure state will appear as an additional mode. The time when this mode appears, 

and its relative frequency, provides clues as to the expected frequency of the failure. 

Discussion 
In this section we present several examples of Petri nets that have been modeled in 

PPN and discuss their dynamics. The goal of these examples is to act as a demonstration 

of Petri nets as well as PPN. 

Example: Communication protocol 

In this example we consider a Petri net of a communication protocol (Figure A.2). 

This particular protocol is modeled as having send and receive queues and two channels 

for communication. Messages are only sent on the first link, while the second link is 

reserved for sending acknowledgments. All transitions are deterministic with fixed time 

delays. The simulation results show the expected decrease of tokens in the sendQueue 

and the corresponding increase of tokens in the rcvQueue place. Steady state occurs at t = 

60 (Figure A.3).
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Figure A.2: Communication protocol 

 
Figure A.3: Simulation of comm. protocol 

To continue the exploration of the dynamics of this system, PPN can color-code the 

places with their relative token counts to show the patterns in the flow of tokens. Shown 

below are three time points that have been selected to show the initial state (Figure A.4), 

an intermediate state (Figure A.5), and the steady-state configuration (Figure A.6). 

 
Figure A.4: State at t=0 

 
Figure A.5: State at t = 

23.7 

 
Figure A.6: State at t = 

63.9 

Example: Stochastic vs. deterministic 

To examine the differences between stochastic and deterministic transitions, consider 

Figure A.7, which is a model that contains two identical networks, with the top network 

consisting of deterministic transitions and the bottom network consisting of stochastic 

transitions. All tokens start in the two N1 places and flow to the N1 and N2 places. Also, 

the transition rate of T1 is five-fold faster than T5.  

Steady state occurs at approximately t = 12 (Figure A.8) with N5 containing roughly 

1/5 the number of tokens as N1. This is expected considering the difference in transition 

rate. However, the graph of the stochastic network differs from the deterministic network. 

In fact, with each simulation the stochastic network results will differ (compare Figure 

A.8 to Figure A.9). It is therefore important to perform several simulations and generate 

ensembles (Figure A.10). On average, this model will reach steady state with eight tokens 

in N1 and two tokens in N5, although there are rare contradictory trajectories.
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Figure A.7: Stochastic and 

deterministic models of same 

network 

 
Figure A.8: Stochastic and deterministic simulation 

of the same network

 
Figure A.9: Second simulation showing 

how stochastic results differ each time 

 
Figure A.10: Histogram representation of 

trajectory ensembles 

Example: Identification of deadlock and race conditions 

Simulations of Petri nets can also identify unexpected, potentially dangerous, 

behavior. Consider the Petri net in Figure A.11, which passes tokens from N1 to N2, then 

stochastically transfers the token to either N3 or N4. Once tokens are present in both N3 

and N4, a pair of tokens from each place is combined and recycled back to N1. This may 

be similar to a process in a factory. The network appears benign, but the ensemble of 

thousands of simulations shows an unexpected steady state around t = 1500 (Figure 

A.12). 

Examining one of the trajectories exposes the root cause of this bi-model distribution. 

Starting from the initial conditions (Figure A.13), at an intermediate point the tokens are 

split between places N3 and N4 (Figure A.14), but eventually, at steady state, all the 
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tokens have become lodged in N4 (Figure A.15). In a different trajectory, the tokens may 

have become lodged in N3. This network demonstrates the detection of race conditions, 

here present at N2, and deadlock, the network has a steady state where none should exist. 

 
Figure A.11: Example model with 

deadlock possible 

 
Figure A.12: Simulation results showing 

that a deadlock is possible in N3 or N4 

 
Figure A.13: State at t 

= 0 

 
Figure A.14: State at t 

= 3.0 

 
Figure A.15: State at t 

= 4.8 

Example: Reliability impact of serial modules 

In this example we consider how Petri nets can be used to model reliability using a 

network of modules in series. In subsequent examples, we will examine how the 

reliability changes when the modules are in parallel. 

First, let’s define a subnetwork (Figure A.16) to contain the network in Figure A.17. 

This subnetwork allows tokens to transition deterministically in a single time step if the 

node is active. However, the node can stochastically fail, after which no tokens can 

transition. 
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Figure A.16: Subnetwork module for 

serial networks 

 
Figure A.17: Internals of subnetwork 

module 

We can use this subnetwork to compose a series of networks containing one, two, and 

three modules (Figure A.18). Given tokens recycle from the destination to the source 

places in these networks, failures can be detected by identifying steady states when the 

destination place is drained of tokens. With one module steady state occurs at 

approximately 100 time units, with two modules this happens at approximately 40 time 

units, and with three modules total system failure occurs at approximately 20 time units 

(Figure A.19). While these results do not exactly reflect the expected times, they are 

reasonable, and with additional trajectories the simulation results should asymptotically 

reach the expected times. 

 
Figure A.18: Three networks with an 

increasing number of modules in series 

 
Figure A.19: Simulation results showing 

how reliability decreases with increase in 

modules 
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Example: Reliability impact of parallel modules 

Using a similar subnetwork as with the serial example, the next networks consider the 

impact of parallel modules on reliability. In the first example, we have only one module 

(Figure A.20), and failure occurs at t = 70 (Figure A.21), but the second example (Figure 

A.22) has five modules in parallel increasing the time before total system failure to t = 90 

(Figure A.23), as expected. 

 
Figure A.20: Network with modules in 

parallel  (only one module active) 
 

Figure A.21: Simulation results of 

network of parallel modules (only one module 

active) 

 

 
Figure A.22: Network with modules in 

parallel  (five modules active) 
 

Figure A.23: Simulation results of 

network of parallel modules (five modules 

active) 
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Example: Reliability impact of modules with failover 

The previous example (Figure A.22) has all parallel modules active from the start. 

Using Petri nets we can test how the reliability of the system changes if only a single 

module is active at any point. Failure of an active module triggers rollover to the next 

module. By adding an extra signal from the subnetwork to trigger a power-on event in the 

subnetwork (Figure A.24 and Figure A.25), a parallel network with failover capability 

can be created (Figure A.26). Simulation of this network shows that failure does not 

occur until t = 170 (Figure A.27), which is significantly better than t = 90 when all 

modules were active from the start in the previous example. This configuration is clearly 

superior from the perspective of reliability if one can tolerate system downtime to 

rollover. One could relate this to real-world modules with limited usefulness while 

powered-on. 

 
Figure A.24: Subnetwork module for 

parallel networks  

  
Figure A.25: Internals of subnetwork 

module 

 

 
Figure A.25: Network of parallel modules 

with failover 

 
Figure A.26: Simulation results of parallel 

modules with failover 
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Fut

roperty of a place or a transition one must access a 

 is inconvenient when many changes must be 

ma le where any property of a model could be 

of parameters to be saved and recalled.  

sults is useful for gaining an appreciation 

of the overall behavior of the system; however, there is currently no way to statistically 

ilarly, there is currently no way to know when sufficient 

s, 

ACM Comp. Sur. 9:223-52. 

y, G.A. 2003. Petri Net representations in 

systems biology. Biochem. Soc. Trans. 31:1513-5. 

oud, J. 1998. Quantitative modeling of stochastic systems in 

l. Acad. Sci. U.S.A. 95:6750-

 
 

ure improvements 

Currently, to make a change to any p

property dialog of that particular node. This

de. We would like to create a single tab

changed. This change will also allow sets 

The graphical presentation of the simulation re

summarize these results. Sim

simulation has been performed. By adding some statistical measures of the simulation result

both of these deficits may be addressed. 

Conclusions 
We have developed a new Petri net modeling package, PPN, capable of modeling hybrid 

deterministic and stochastic systems. We have demonstrated PPN using examples modeling 

systems, estimating reliability, and testing for unexpected behavior. PPN can be used as a 

modeling tool or a teaching aid. 
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XML. 525-34. In V.Kordic (ed.) Petri Net: Theory and Applications. I-Tech Education 
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 3.  Pinney, J.W., Westhead, D.R., and McConke

 4.  Goss, P.J. and Pecc

molecular biology by using stochastic Petri nets. Proc. Nat
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Appendix B. Additional examples 

hat follows is a summary of modeling and optimization experiments for each 

network in the Guet library. In the network model diagrams, an X over a section of the 

network model highlights a disconnected section that should not have any influence. The 

following simulation parameters were present in all the reports and have been factored 

out for brevity. 

Simulation: 
  Simulation Method: ODE (0) 
  Time Interval: [0,100] 
  Sampl
  Absol
  Relative Tolerance: 0.0001 
  Max ODE Step Size: 1 
  Min ODE Step Size: 0 
  Single Trajectory: false 
  Number of Replicates: 20 
  Histogram Update Rate: -1 
  Current Environment: 1 (of 4 total) 
  Current Fitness Function: Null (0) 

 

 

 

W

 

ing Rate: 0.1 
ute Tolerance: 1e-008 
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The networks in the Guet collection respond to stimuli from two external chemical 

signals. Given the h ent, they can 

be considered as Boolean signals. Setting a threshold for the florescence of GFP allows 

the  

 

igh concentrations of these chemical signals when pres

response of each network, its phenotype, to be interrupted as a Boolean function.

Table B.1 is a summarization of the Guet constructions, their phenotypes, and how they

relate to Boolean functions of two inputs. Some Boolean functions have no analogue in 

the network library. 

( , ) #f x y  
Class 

x y x y
 

x y
 

x y
  

Logic name Textual name Guet 
constructs 

0 0 0 0 0 False False D028 D090 
D104 D114 
D123 D250 
D253(1) 

Nor  1 0 0 0 1 x y  

x y  2 0 0 1 0 Inhibition D019 D038 
D078 

y  3 0 0 1 1 Not Y  

x y  4 0 1 0 0 Inhibition C101 

x  5 0 1 0 1 Not X  
6 0 1 1 0 x y Exclusive Or   
7 0 1 1 1  Nand  x y

x y  And D012 D016 
D052 
D066(2) 
C024 
C103(2) 
C113(2) 
C133(2) 
C242 

8 1 0 0 0 

x y  9 1 0 0 1 Equivalence  
x  x  D032 D101 

D113(1) 
10 1 0 1 0 

11 1 0 1 1 Implication  y x  
12 1 1 0 0 D066(1) 

D143 D180 
D253(2) 
C103(1) 
C113(1) 
C144 

y  y  

x y  13 1 1 0 1 Implication  
x y  14 1 1 1 0 Or  

15 1 1 1 1 True True D118 
D113(2) 
D117 D133 
D135 C195 

Table: B.1:  Interpretation of Guet networks as Boolean functions 

 



171 

d012 

 

e experimental data clearly show aTc having an influence. The 

have en tr g to ke th d

gies” th d rent mot yiel nt logi ions. 

 

 nv1 E  nv3 E v4 

 

The experimental data of this network are not consistent with the theory of how the 

network should behave. Since tetR only regulates itself, the expression of tetR should

have no impact on the expression of GFP. Therefore one would expect GFPenv1 ~= 

GFPenv3 and GFPenv2 ~= GFPenv4. Effectively, this network should act as only a function 

of IPTG. However, th

authors m

polo

ight  be yin ma is point when pointing out that i entical 

“to  wi iffe  pro ers d differe cal funct

E  nv2 E n
IPTG/aTc -/- +/- -/+ /+ +
Exp1 96 34 463 25958 1
Exp2 99 98 263 21095 1
Exp3 97 74 429 15445 
Mean 98 35 385 20800 1
Opt 97 70 271 27097  2
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Molecu
  GFP 

les (16): 
 DR=80.7071 

  GFPg  IC=1 
  GFPgX 
  I
  LacI  DR=243508 

 
 
Reactions (2
  D1:  LacI --> 0  Kf=243508 
  D2:  TetR --> 0  Kf=431930 
  lambda > 0 37866
  D4:  GFP --> 0  Kf=80.7071 
  D5:  LacIX --> 0  Kf=20711.6 
  D6:  TetRX --> 0  Kf=546715 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=870724  Kr=54674.6 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=870724  Kr=54674.6 
  PL1:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=295651  Kr=691023 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=454467  Kr=137193 
  R1:  IPTG + LacI <-> LacIX  Kf=816165  Kr=692311 
  R2:  aTc + TetR <-> TetRX  Kf=373474  Kr=847260 
  T1:  LacIg --> LacIg + LacI  Kf=990824 
  T2:  TetRg --> TetRg + TetR  Kf=19294.5 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=563886 
  T4:  GFPg --> GFPg + GFP  Kf=792745 

PTG  (Control Variable) 

  LacIX  DR=20711.6 
  LacIg  IC=1 
  LacIgX 
  TetR  DR=431930 
  TetRX  DR=546715 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=378665 
  lambda cIg  IC=1 
  lambda cIgX 

 2): 

 D3: cI --  Kf= 5 
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 of

have. See dis

aper 

d016 

 

The experimental data  this network are not consistent with the theory of how the 

cussion in d012. This particular network is acknowledged 

as exhibiting a NOR function 

nv2 Env3 Env4 

network should be

in Figure 5 of Guet’s p

 

 Env1 E
IPTG/aTc -/- +/- +/+ -/+ 
Exp1 28391 1190 652698
Exp2 28998 1160 748 484
Exp3 29176 825 863 766
Mean 28855 1058 770 634
Opt 14813 846 14813 846
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Molecules (16): 
 DR=59.5489 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L

  TetRX  DR=637180 
  TetRg  IC=1 
  TetRgX 
 ntro iable)
  lambda cI  DR=446273 
 da cIg  IC
  lambda cIgX 
 
 
Reactions (22): 
   LacI --> 4549.8
  D2:  TetR --> 0  Kf=385194 
  D3:  lambda cI --> 0  Kf=446273 
  D4:  GFP --> 0  Kf=59.5489 
  D5:  LacIX --> 0  Kf=244179 
  D6:  TetRX --> 0  Kf=637180 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=649138  Kr=120499 
  PL1:  LacIg + 4LacI <-> LacIgX  Kf=3259.68  Kr=946545 
  PL2:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=575560  Kr=505127 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=677606  Kr=867500 
  R1:  IPTG + LacI <-> LacIX  Kf=711270  Kr=743979 
  R2:  aTc + TetR <-> TetRX  Kf=117110  Kr=958953 
  T1:  LacIg --> LacIg + LacI  Kf=682183 
  T2:  TetRg --> TetRg + TetR  Kf=535086 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=781232 
  T4:  GFPg --> GFPg + GFP  Kf=882170 

 

 

  GFP 
  GFPg

acI  DR=74549.8 
acIX  DR=244179 

  LacIg  IC=1 
  LacIgX 
  TetR  DR=385194 

 aTc  (Co l Var  

 lamb =1 

 D1: 0  Kf=7  
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repr

I. This subtl repression of  

is presen

h would

hi

FP levels sho

Env3 Env4 

d018 

 

tetR and LacI act to ess each other although not completely. Some tetR is able to 

lamCI results in a subtle repression of GFP.

t there is a slight increase in GFP, which would require a 

 require an increase in tetR, which would require a 

hibited by IPTG. 

bit LacI and aTc to inhibit tetR, lamCI levels should be 

uld be their lowest. Does not agree. 

also repress lamC

Env2: When IPTG 

decrease in lamCI, whic

decrease in LacI. LacI is being in

Env3: With no IPTG to in

their highest and G

 

 Env1 Env2 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 5714 4935 7096 6454
Exp2 5989 4800 6656 6875
Exp3 5537 5128 7181 6719
Mean 5747 4954 6978 6682
Opt 6090 6090 6090 6090
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Molecules (16): 
 DR=134.998 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L

  T

  l
  l

 
Reactions (22): 
 D1:  LacI - Kf=157
 R --  Kf=3506
  D3:  lambda cI --> 0  Kf=976142 
  GFP --> 0 34.998
  LacIX --> =13608
  TetRX --> =46706
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=233959  Kr=537530 
  PL2:  TetRg + 4LacI <-> TetRgX  Kf=586015  Kr=64471.8 
  PTa:  LacIg + 2TetR <-> LacIgX  Kf=523640  Kr=0.00011 
  PTb:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=523640  Kr=0.00011 
  R1:  IPTG + LacI <-> LacIX  Kf=542136  Kr=383598 
  R2:  aTc + TetR <-> TetRX  Kf=121444  Kr=914971 
  T1:  LacIg --> LacIg + LacI  Kf=769807 
  T2:  TetRg --> TetRg + TetR  Kf=964088 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=12312.9 
  T4:  GFPg --> GFPg + GFP  Kf=822182 

  GFP 
  GFPg

acI  DR=157215 
acIX  DR=136089 

  LacIg  IC=1 
  LacIgX 

etR  DR=350608 
  TetRX  DR=467069 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 

ambda cI  DR=976142 
ambda cIg  IC=1 

  lambda cIgX 
 

 -> 0  215 
 D2:  Tet > 0 08 

 D4:   Kf=1  
 D5:  0  Kf 9 
 D6:  0  Kf 9 

 

 



177 

 

d019 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 386 609 10550 125
Exp2 300 561 10796 117
Exp3 308 419 11017 264
Mean 331 530 10788 169
Opt 343 343 10788 343
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Molecules (16): 
 DR=72.0054 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  LacI  DR=60450.8 
  LacIX  DR=784418 
  LacIg  IC=1 
  LacIgX 
   DR=4322.0
 X  DR=82715
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=179980 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=60450.8 
  D2:  TetR --> 0  Kf=4322.02 
  D3:  lambda cI --> 0  Kf=179980 
  D4:  GFP --> 0  Kf=72.0054 
  D5:  LacIX --> 0  Kf=784418 
  D6:  TetRX --> 0  Kf=827155 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=991594  Kr=437304 
  PL2:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=698082  Kr=855382 
  PTa:  LacIg + 2TetR <-> LacIgX  Kf=999944  Kr=3.8043 
  PTb:  TetRg + 2TetR <-> TetRgX  Kf=999944  Kr=3.8043 
  R1:  IPTG + LacI <-> LacIX  Kf=503098  Kr=822883 
  R2:  aTc + TetR <-> TetRX  Kf=522304  Kr=987878 
  T1:  LacIg --> LacIg + LacI  Kf=909974 
  T2:  TetRg --> TetRg + TetR  Kf=732717 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=680721 
  T4:  GFPg --> GFPg + GFP  Kf=826437 

 

 

  GFP 
  GFPg

 TetR 2 
 TetR 5 
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d016 th

dent of one of

ince La

tal data 

s w

d028 

 

Similar to d012 and e theory of this network says that the expression of GFP 

 the environmental signals. In this case, d028 should be 

cI does not regulate any other transcription factor. 

do not provide a very strong case, it does appear that this 

c is present there is a ~50% reduction in GFP expression 

ithout aTc. 

should be indepen

dependent only on aTc s

Although the experimen

idea may be supported. When aT

compared to the environment

 

Env1 Env2 Env3 Env4  
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 741 526 246 271
Exp2 475 786 219 265
Exp3 499 665 387 229
Mean 571 659 284 255
Opt 615 615 270 270
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Molecules (16): 
 DR=1425.76 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L

  lambda cIgX 
 
 
R (22)
 I -- =92
  TetR --> =11658
  D3:  lambda cI --> 0  Kf=375725 
  GFP --> 0 1425.7
 LacIX --> f=4698
 TetRX --> f=6161
  PL+:  TetRg + 2(lambda cI) <-> TetRgX  Kf=6467.86  Kr=966913 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=637688  Kr=698314 
  PL1:  LacIg + 4LacI <-> LacIgX  Kf=1467.59  Kr=367764 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=260214  Kr=596849 
  R1:  IPTG + LacI <-> LacIX  Kf=472325  Kr=552886 
  R2:  aTc + TetR <-> TetRX  Kf=902657  Kr=941680 
  T1:  LacIg --> LacIg + LacI  Kf=977.144 
  T2:  TetRg --> TetRg + TetR  Kf=765403 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=446575 
  T4:  GFPg --> GFPg + GFP  Kf=879981 

  GFP 
  GFPg

acI  DR=927732 
acIX  DR=469867 

  LacIg  IC=1 
  LacIgX 
  TetR  DR=116581 
  TetRX  DR=616171 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=375725 
  lambda cIg  IC=1 

eactions 
 Lac

: 
> 0 D1: 

 D2: 
  Kf
0  Kf

7732 
1 

 D4:   Kf= 6 
 D5:  
 D6:  

 0  K
 0  K

67 
71 
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ept PL

d032 

 

Identical to d012 exc 2 instead of PL1. These two might be a good first pair. 

Env2 Env3 Env4 

 

 Env1 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 47156 47627 654 1049
Exp2 48978 1008 48928 806
Exp3 48172 1084 50132 753
Mean 48102 1047 48895 738
Opt 48499 892 48499 892
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Molecules (16): 
 DR=20.3931 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L
  LacIg  IC=1 
  LacIgX 
 TetR  DR=141
  TetRX  DR=547239 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=303790 
 a cIg  IC
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=9565.06 
  D2:  TetR --> 0  Kf=141536 
  D3:  lambda cI --> 0  Kf=303790 
  D4:  GFP --> 0  Kf=20.3931 
  D5:  LacIX --> 0  Kf=556231 
  D6:  TetRX --> 0  Kf=547239 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=879296  Kr=88370.6 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=879296  Kr=88370.6 
  PL2:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=866991  Kr=595419 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=779032  Kr=78355.8 
  R1:  IPTG + LacI <-> LacIX  Kf=88788.1  Kr=500960 
  R2:  aTc + TetR <-> TetRX  Kf=504998  Kr=742455 
  T1:  LacIg --> LacIg + LacI  Kf=747025 
  T2:  TetRg --> TetRg + TetR  Kf=715170 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=703448 
  T4:  GFPg --> GFPg + GFP  Kf=989039 

 

 

  GFP 
  GFPg

acI  DR=9565.06 
acIX  DR=556231 

 536 

 lambd =1 
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19. En

uet as such

d038 

 

Same topology as d0 v3 differs. Roughly the same GFP expression. Mutation? 

. Very different parameters. 

Env2 Env3 Env4 

Not indicated by G

 

 Env1 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 614 654 17313903
Exp2 399 541 13421 207
Exp3 269 458 13878 325
Mean 427 551 13734 235
Opt 427 393 13734 393
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Molecules (16): 
 DR=56.0518 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L

  TetR  DR=11394.2 
  TetRX  DR=568344 
 TetRg  IC=1
 
  aTc  (Control Variable) 
  lambda cI  DR=164168 
 da cIg  IC
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=97406.3 
  D2:  TetR --> 0  Kf=11394.2 
  D3:  lambda cI --> 0  Kf=164168 
  D4:  GFP --> 0  Kf=56.0518 
  D5:  LacIX --> 0  Kf=402256 
  D6:  TetRX --> 0  Kf=568344 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=693406  Kr=282444 
  PL2:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=789120  Kr=566996 
  PTa:  LacIg + 2TetR <-> LacIgX  Kf=265668  Kr=225839 
  PTb:  TetRg + 2TetR <-> TetRgX  Kf=265668  Kr=225839 
  R1:  IPTG + LacI <-> LacIX  Kf=726516  Kr=233644 
  R2:  aTc + TetR <-> TetRX  Kf=536712  Kr=37503.7 
  T1:  LacIg --> LacIg + LacI  Kf=370007 
  T2:  TetRg --> TetRg + TetR  Kf=267284 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=610549 
  T4:  GFPg --> GFPg + GFP  Kf=770114 

 

 

  GFP 
  GFPg

acI  DR=97406.3 
acIX  DR=402256 

  LacIg  IC=1 
  LacIgX 

  
 TetRgX 

 lamb =1 
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ays cau

 could be ma

ttemp e 

the reas

 c

ptim

Env3 Env4 

d052 

 

This network has alw sed a problem for the Optimization Engine. Three of the 

tched but the experimental data from Env2 could never be 

ted to construct this network by hand and ran into the sam

oning, but at the time there seemed to be something 

were suggesting and the theory of the network. 

ould be optimized. If IPTG and aTc have same role both 

ize. Should be able to take d019 and swap TetR and LacI and have 

four environments

matched. Jean Peccoud a

problem. I do not recall 

contradictory about that the data 

Isomorphic to d019 which

networks should o

a solution. 

 

 Env1 Env2 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 13119 554 392 577
Exp2 13841 517 492 646
Exp3 13711 331 421 836
Mean 13557 468 435 686
Opt 7012 7012 435 686
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Molecules (16): 
 DR=120.506 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L

  l
  l

Reactions (22): 
  D1:  LacI --> 0  Kf=238622 
  D2:  TetR --> 0  Kf=9565.21 
  D3:  lambda cI --> 0  Kf=224105 
  --> Kf=120.5
  LacIX -- =974606
  TetRX -- =615382
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=854293  Kr=576795 
  PL1a:  LacIg + 4LacI <-> LacIgX  Kf=628261  Kr=334889 
  PL1b:  TetRg + 4LacI <-> TetRgX  Kf=628261  Kr=334889 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=716071  Kr=2317.44 
   IPTG + La  LacIX 267066 =10327.
  R2:  aTc + TetR <-> TetRX  Kf=600864  Kr=992330 
  T1:  LacIg --> LacIg + LacI  Kf=349374 
  T2:  TetRg --> TetRg + TetR  Kf=890490 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=817812 
  T4:  GFPg --> GFPg + GFP  Kf=845043 

  GFP 
  GFPg

acI  DR=238622 
acIX  DR=974606 

  LacIg  IC=1 
  LacIgX 
  TetR  DR=9565.21 
  TetRX  DR=615382 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 

ambda cI  DR=224105 
ambda cIg  IC=1 

  lambda cIgX 
 
 

 D4:  GFP  0  06 
 D5: > 0  Kf  
 D6: > 0  Kf  

 R1: cI <->   Kf=   Kr 5 
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E

d066 

 

Repressalator like. 

 

 Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 7673 1490 425 470
Exp2 7574 1628 387 387
Exp3 8314 1746 418 451
Mean 7854 1622 410 436
Opt 4737 4737 419 429
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Molecules (16): 
 DR=171.767 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  LacIX  DR=587690 
  LacIg  IC=1 
  LacIgX 
  TetR  DR=23.3899 
  TetRX  DR=625877 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=410721 
 a cIg  IC
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=178964 
  D2:  TetR --> 0  Kf=23.3899 
  D3:  lambda cI --> 0  Kf=410721 
  D4:  GFP --> 0  Kf=171.767 
  D5:  LacIX --> 0  Kf=587690 
  D6:  TetRX --> 0  Kf=625877 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=991691  Kr=352617 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=991691  Kr=352617 
  PL2:  TetRg + 4LacI <-> TetRgX  Kf=448874  Kr=244670 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=350211  Kr=8719.81 
  R1:  IPTG + LacI <-> LacIX  Kf=329971  Kr=245577 
  R2:  aTc + TetR <-> TetRX  Kf=270977  Kr=657054 
  T1:  LacIg --> LacIg + LacI  Kf=880152 
  T2:  TetRg --> TetRg + TetR  Kf=693412 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=862305 
  T4:  GFPg --> GFPg + GFP  Kf=813716 

 

 

  GFP 
  GFPg

acI  DR=178964 

 lambd =1 
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d078 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 155 156 47482 380
Exp2 28 130 47895 430
Exp3 126 152 50391 413
Mean 103 146 48589 408
Opt 125 125 48589 408
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Molecules (16): 
 DR=14.4561 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=17
  LacIX  DR=156698 
  LacIg  IC=1 
  LacIgX 
   DR=2255.74
 X  DR=31377
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=165843 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=170030 
  D2:  TetR --> 0  Kf=2255.74 
  D3:  lambda cI --> 0  Kf=165843 
  D4:  GFP --> 0  Kf=14.4561 
  D5:  LacIX --> 0  Kf=156698 
  D6:  TetRX --> 0  Kf=313775 
  PL+:  TetRg + 2(lambda cI) <-> TetRgX  Kf=306208  Kr=999970 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=590022  Kr=38906.5 
  PL2:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=154017  Kr=29460.3 
  PT:  LacIg + 2TetR <-> LacIgX  Kf=622448  Kr=37503.2 
  R1:  IPTG + LacI <-> LacIX  Kf=88754.6  Kr=912393 
  R2:  aTc + TetR <-> TetRX  Kf=572750  Kr=93924 
  T1:  LacIg --> LacIg + LacI  Kf=924437 
  T2:  TetRg --> TetRg + TetR  Kf=500922 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=840024 
  T4:  GFPg --> GFPg + GFP  Kf=702424 

 

 

  GFP 
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E

d090 

 

 Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 212 188 205 122
Exp2 183 205 45 198
Exp3 215 95 28 56
Mean 204 163 93 125
Opt 148 144 148 144
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Molecules (16): 
 DR=4255.32 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=16
  LacIX  DR=659470 
  LacIg  IC=1 
  LacIgX 
   DR=631411
 X  DR=29647
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=688076 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=164421 
  D2:  TetR --> 0  Kf=631411 
  D3:  lambda cI --> 0  Kf=688076 
  D4:  GFP --> 0  Kf=4255.32 
  D5:  LacIX --> 0  Kf=659470 
  D6:  TetRX --> 0  Kf=296473 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=413694  Kr=361919 
  PL1:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=427833  Kr=395052 
  PL2:  TetRg + 4LacI <-> TetRgX  Kf=772882  Kr=778335 
  PT:  LacIg + 2TetR <-> LacIgX  Kf=76309.8  Kr=698737 
  R1:  IPTG + LacI <-> LacIX  Kf=773631  Kr=114916 
  R2:  aTc + TetR <-> TetRX  Kf=511440  Kr=442122 
  T1:  LacIg --> LacIg + LacI  Kf=873969 
  T2:  TetRg --> TetRg + TetR  Kf=183488 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=110284 
  T4:  GFPg --> GFPg + GFP  Kf=630636 

 

 

  GFP 
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erful ex

y. Neither 

 Ne

n funct

 f

ce of IPTG m

ave not be dependent on environmental signals. IPTG takes LacI out 

uired. Without IPTG lambda cI is tied up. Why env1 

d101 

 

This is another wond ample of the experimental data showing that there are 

of the environmental inputs have any apparent connection to 

ither LacI nor tetR are involved in regulating λcI, but there is 

ion being expressed in the observed data. Not 

n present in the optimized network. Whatever 

or the observed data is certainly not represented in the 

ust be tying up λcI transcription factor protein somehow. 

errors in the theor

the expression of GFP.

certainly a strong Boolea

surprisingly, there is no regulatio

mechanism that is responsible

model. The presen

Expression should h

of the system, so lambda cI is not req

!= env3? 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 38940 547 4577 796 
Exp2 38402 711 4635 905 
Exp3 39242 518 4752 954 
Mean 38861 592 4654 885 
Opt 11248 11248 11248 11246 
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Molecules (16): 
 DR=41.2634 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L

etR --> 0  Kf=626336 
ambda cI --> 0  Kf=802316 

  D4:  GFP --> 0  Kf=41.2634 
  D5:  LacIX --> 0  Kf=676431 
 D6:  TetRX -  Kf=189
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=591742  Kr=591733 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=591742  Kr=591733 
  PL1:  (lambda cIg) + 2(lambda cI) <-> (lambda cIgX)  Kf=600641  
Kr=0.001191 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=532494  Kr=695404 
  R1:  IPTG + LacI <-> LacIX  Kf=198217  Kr=482402 
  R2:  aTc + TetR <-> TetRX  Kf=800901  Kr=203937 
  T1:  LacIg --> LacIg + LacI  Kf=904276 
  T2:  TetRg --> TetRg + TetR  Kf=497727 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=617.831 
  T4:  GFPg --> GFPg + GFP  Kf=464138 

  GFP 
  GFPg

acI  DR=628543 
acIX  DR=676431 

  LacIg  IC=1 
  LacIgX 
  TetR  DR=626336 
  TetRX  DR=189727 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=802316 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=628543 
  D2:  T
  D3:  l

 -> 0 727 
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her env

y the expressi

 to λ

bited n

uc

t lambda cI has 

Env3 Env4 

d104 

 

Similar to d101, neit ironmental factor should have any influence on this 

on of GFP is considerably lower than in d101. Again, 

cI being tied up in regulation, in this case, of itself. 

o regulation at all, which is what is expected. Perhaps a 

ment would have been nice. This network agrees with 

ing and represses GFP. Result GFP is always repressed. 

no requirement to bind to LacI. 

network. Strangel

there may be something

Optimized network exhi

little higher in the fourth environ

theory. Lambda CI is self ind

Similar to d101 bu

 

 Env1 Env2 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 295 190 225 320
Exp2 222 254 264 352
Exp3 130 186 215 359
Mean 216 210 235 344
Opt 251 251 251 251

 

 

 

 

 

 

 



196 

Molecules (16): 
 DR=3980.38 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L

 
Reactions (22): 
  D1:  LacI --> 0  Kf=663608 
  D2:  TetR --> 0  Kf=826580 
  D3:  lambda cI --> 0  Kf=937136 
  GFP --> 0 3980.3
  LacIX --> f=7737
  TetRX --> f=1826
  PL+:  (lambda cIg) + 2(lambda cI) <-> (lambda cIgX)  Kf=983641  
Kr=667247 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=931113  Kr=695206 
  PL1a:  LacIg + 4LacI <-> LacIgX  Kf=348546  Kr=197833 
  PL1b:  TetRg + 4LacI <-> TetRgX  Kf=348546  Kr=197833 
  R1:  IPTG + LacI <-> LacIX  Kf=349493  Kr=404070 
  R2:  aTc + TetR <-> TetRX  Kf=331007  Kr=967923 
  T1:  LacIg --> LacIg + LacI  Kf=556080 
  T2:  TetRg --> TetRg + TetR  Kf=722975 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=11605.2 
  T4:  GFPg --> GFPg + GFP  Kf=999648 

  GFP 
  GFPg

acI  DR=663608 
acIX  DR=773766 

  LacIg  IC=1 
  LacIgX 
  TetR  DR=826580 
  TetRX  DR=182648 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=937136 
  lambda cIg  IC=1 
  lambda cIgX 
 

 D4:   Kf= 8 
 D5:  0  K 66 
 D6:  0  K 48 
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, env2}

d113 

 

Would expect {env1  > {env3, env4} 

Env2 Env3 Env4 

 

 Env1 
IPTG/aTc -/- +/- +/+ -/+ 
Exp1 34153 1878 1140 37329
Exp2 35760 1768 1060 38170
Exp3 35579 1864 1177 39394
Mean 35164 1837 1126 38298
Opt 36731 1481 1481 36731
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Molecules (16): 
 DR=20.3362 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L
  LacIg  IC=1 
  LacIgX 
 TetR  DR=454
  TetRX  DR=526902 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=622375 
 a cIg  IC
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=63613.9 
  D2:  TetR --> 0  Kf=454711 
  D3:  lambda cI --> 0  Kf=622375 
  D4:  GFP --> 0  Kf=20.3362 
  D5:  LacIX --> 0  Kf=560147 
  D6:  TetRX --> 0  Kf=526902 
  PL+:  LacIg + 2(lambda cI) <-> LacIgX  Kf=461033  Kr=945892 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=554282  Kr=43361.1 
  PL1a:  TetRg + 4LacI <-> TetRgX  Kf=224615  Kr=912496 
  PL1b:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=224615  Kr=912496 
  R1:  IPTG + LacI <-> LacIX  Kf=776916  Kr=289291 
  R2:  aTc + TetR <-> TetRX  Kf=485438  Kr=211240 
  T1:  LacIg --> LacIg + LacI  Kf=795358 
  T2:  TetRg --> TetRg + TetR  Kf=539722 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=849225 
  T4:  GFPg --> GFPg + GFP  Kf=746969 

 

 

  GFP 
  GFPg

acI  DR=63613.9 
acIX  DR=560147 

 711 

 lambd =1 
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E

d114 

 

 Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 185 326 493 467
Exp2 171 200 385 369
Exp3 300 302 462 412
Mean 219 276 446 416
Opt 339 339 339 339
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Molecules (16): 
 DR=2022.03 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=37
  LacIX  DR=639956 
  LacIg  IC=1 
  LacIgX 
   DR=235765
 X  DR=55411
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=904719 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=372063 
  D2:  TetR --> 0  Kf=235765 
  D3:  lambda cI --> 0  Kf=904719 
  D4:  GFP --> 0  Kf=2022.03 
  D5:  LacIX --> 0  Kf=639956 
  D6:  TetRX --> 0  Kf=554113 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=0.011607  Kr=630858 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=0.011607  Kr=630858 
  PL2a:  TetRg + 4LacI <-> TetRgX  Kf=520435  Kr=165635 
  PL2b:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=520435  Kr=165635 
  R1:  IPTG + LacI <-> LacIX  Kf=931394  Kr=596329 
  R2:  aTc + TetR <-> TetRX  Kf=616791  Kr=566215 
  T1:  LacIg --> LacIg + LacI  Kf=132772 
  T2:  TetRg --> TetRg + TetR  Kf=893129 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=11881.7 
  T4:  GFPg --> GFPg + GFP  Kf=686187 

 

 

  GFP 
  GFPg
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 TetR  
 TetR 3 
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d117 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 43974 47048 52142 53199 
Exp2 45900 44002 50953 52515 
Exp3 46322 47710 51506 51342 
Mean 45399 46254 51534 52352 
Opt 48884 48884 48884 48884 
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Molecules (16): 
 DR=20.2238 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=605
 R=89
  LacIg  IC=1 
  LacIgX 
   DR=599154
 X  DR=26519
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=617496 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=605608 
  D2:  TetR --> 0  Kf=599154 
  D3:  lambda cI --> 0  Kf=617496 
  D4:  GFP --> 0  Kf=20.2238 
  D5:  LacIX --> 0  Kf=898995 
  D6:  TetRX --> 0  Kf=265194 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=151820  Kr=542077 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=151820  Kr=542077 
  PL1a:  TetRg + 4LacI <-> TetRgX  Kf=478051  Kr=912048 
  PL1b:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=478051  Kr=912048 
  R1:  IPTG + LacI <-> LacIX  Kf=0.467327  Kr=833851 
  R2:  aTc + TetR <-> TetRX  Kf=353974  Kr=861973 
  T1:  LacIg --> LacIg + LacI  Kf=188121 
  T2:  TetRg --> TetRg + TetR  Kf=474191 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=0.403215 
  T4:  GFPg --> GFPg + GFP  Kf=988632 

 

 

  GFP 
  GFPg

 608 
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En

d123 

 

Repressalator like 

 

  Env1 v2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 570 723 397 388
Exp2 629 900 387 305
Exp3 762 977 423 157
Mean 653 867 402 283
Opt 654 867 343 343
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Molecules (16): 
 DR=958.766 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  LacIX  DR=244878 
  LacIg  IC=1 
  LacIgX 
 etR  DR=20
  TetRX  DR=700063 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=555925 
 a cIg  IC
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=251783 
  D2:  TetR --> 0  Kf=202925 
  D3:  lambda cI --> 0  Kf=555925 
  D4:  GFP --> 0  Kf=958.766 
  D5:  LacIX --> 0  Kf=244878 
  D6:  TetRX --> 0  Kf=700063 
  PL+:  LacIg + 2(lambda cI) <-> LacIgX  Kf=883720  Kr=199628 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=558657  Kr=719031 
  PL2:  TetRg + 4LacI <-> TetRgX  Kf=691591  Kr=692971 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=492835  Kr=701118 
  R1:  IPTG + LacI <-> LacIX  Kf=956356  Kr=220841 
  R2:  aTc + TetR <-> TetRX  Kf=898519  Kr=412222 
  T1:  LacIg --> LacIg + LacI  Kf=839707 
  T2:  TetRg --> TetRg + TetR  Kf=562499 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=805156 
  T4:  GFPg --> GFPg + GFP  Kf=863885 
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d133 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 44918 44056 45511 52095 
Exp2 42908 44440 47256 52900 
Exp3 42598 44889 50619 54159 
Mean 43475 44462 47795 53051 
Opt 47196 47196 47196 47196 
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Molecules (16): 
 DR=1.1651 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=809
  LacIX  DR=0.511133 
  LacIg  IC=1 
  LacIgX 
   DR=485995
 X  DR=60208
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=279468 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=8094.8 
  D2:  TetR --> 0  Kf=485995 
  D3:  lambda cI --> 0  Kf=279468 
  D4:  GFP --> 0  Kf=1.1651 
  D5:  LacIX --> 0  Kf=0.511133 
  D6:  TetRX --> 0  Kf=602087 
  PL+:  LacIg + 2(lambda cI) <-> LacIgX  Kf=126465  Kr=721532 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=15486.4  Kr=798191 
  PL2:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=680064  Kr=333962 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=882468  Kr=739535 
  R1:  IPTG + LacI <-> LacIX  Kf=0.323142  Kr=747716 
  R2:  aTc + TetR <-> TetRX  Kf=126973  Kr=201933 
  T1:  LacIg --> LacIg + LacI  Kf=948202 
  T2:  TetRg --> TetRg + TetR  Kf=824955 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=925667 
  T4:  GFPg --> GFPg + GFP  Kf=54987.9 
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d135 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 6115 5763 5795 5894 
Exp2 6217 5621 5579 5974 
Exp3 5933 5579 6087 5428 
Mean 6088 5655 5820 5766 
Opt 5832 5832 5832 5832 
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Molecules (16): 
 DR=160.072 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=437
  LacIX  DR=778747 
  LacIg  IC=1 
  LacIgX 
   DR=586675
 X  DR=72643
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=977181 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=437457 
  D2:  TetR --> 0  Kf=586675 
  D3:  lambda cI --> 0  Kf=977181 
  D4:  GFP --> 0  Kf=160.072 
  D5:  LacIX --> 0  Kf=778747 
  D6:  TetRX --> 0  Kf=726431 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=3613.25  Kr=812462 
  PL-b:  (lambda cIg) + 2(lambda cI) <-> (lambda cIgX)  Kf=3613.25  
Kr=812462 
  PL2a:  LacIg + 4LacI <-> LacIgX  Kf=822439  Kr=313557 
  PL2b:  TetRg + 4LacI <-> TetRgX  Kf=822439  Kr=313557 
  R1:  IPTG + LacI <-> LacIX  Kf=495632  Kr=687284 
  R2:  aTc + TetR <-> TetRX  Kf=626813  Kr=379905 
  T1:  LacIg --> LacIg + LacI  Kf=619234 
  T2:  TetRg --> TetRg + TetR  Kf=795419 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=6944.09 
  T4:  GFPg --> GFPg + GFP  Kf=933564 

 

 

  GFP 
  GFPg
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 TetR  
 TetR 1 
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d143 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 14403 14629 621 464 
Exp2 13999 13728 556 449 
Exp3 14256 14016 528 441 
Mean 14219 14124 568 451 
Opt 14172 14172 510 510 
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Molecules (16): 
 DR=63.7527 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=577
 R=72
  LacIg  IC=1 
  LacIgX 
   DR=174.20
 X  DR=82279
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=230394 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=577670 
  D2:  TetR --> 0  Kf=174.206 
  D3:  lambda cI --> 0  Kf=230394 
  D4:  GFP --> 0  Kf=63.7527 
  D5:  LacIX --> 0  Kf=721273 
  D6:  TetRX --> 0  Kf=822797 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=774386  Kr=209093 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=774386  Kr=209093 
  PTa:  TetRg + 2TetR <-> TetRgX  Kf=996155  Kr=60315.3 
  PTb:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=996155  Kr=60315.3 
  R1:  IPTG + LacI <-> LacIX  Kf=963074  Kr=203528 
  R2:  aTc + TetR <-> TetRX  Kf=381229  Kr=649722 
  T1:  LacIg --> LacIg + LacI  Kf=458237 
  T2:  TetRg --> TetRg + TetR  Kf=555520 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=626527 
  T4:  GFPg --> GFPg + GFP  Kf=903553 
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d180 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 46591 48572 753 824 
Exp2 46652 47987 831 855 
Exp3 49246 50113 790 978 
Mean 47496 48891 791 886 
Opt 48091 48830 1022 1043 

 

 

 

 

 

 

 



212 

Molecules (16): 
 DR=9.70114 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=827
 R=88
  LacIg  IC=1 
  LacIgX 
   DR=824161
 X  DR=35162
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=388291 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=82765 
  D2:  TetR --> 0  Kf=824161 
  D3:  lambda cI --> 0  Kf=388291 
  D4:  GFP --> 0  Kf=9.70114 
  D5:  LacIX --> 0  Kf=884439 
  D6:  TetRX --> 0  Kf=351625 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=665825  Kr=46133.1 
  PL2:  TetRg + 4LacI <-> TetRgX  Kf=132111  Kr=797110 
  PTa:  LacIg + 2TetR <-> LacIgX  Kf=893773  Kr=120550 
  PTb:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=893773  Kr=120550 
  R1:  IPTG + LacI <-> LacIX  Kf=754150  Kr=116260 
  R2:  aTc + TetR <-> TetRX  Kf=604750  Kr=548887 
  T1:  LacIg --> LacIg + LacI  Kf=409254 
  T2:  TetRg --> TetRg + TetR  Kf=922826 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=943623 
  T4:  GFPg --> GFPg + GFP  Kf=854629 
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E

d250 

 

 Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 774 329 400 145
Exp2 821 269 449 171
Exp3 791 294 214 233
Mean 796 297 354 183
Opt 575 240 575 240
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Molecules (16): 
 DR=1512.57 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  LacI  DR=12547.5 
  LacIX  DR=43377.7 
  LacIg  IC=1 
  LacIgX 
   DR=420233
 X  DR=46537
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=448462 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=12547.5 
  D2:  TetR --> 0  Kf=420233 
  D3:  lambda cI --> 0  Kf=448462 
  D4:  GFP --> 0  Kf=1512.57 
  D5:  LacIX --> 0  Kf=43377.7 
  D6:  TetRX --> 0  Kf=465376 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=380168  Kr=992123 
  PL1a:  LacIg + 4LacI <-> LacIgX  Kf=26208.8  Kr=655176 
  PL1b:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=26208.8  Kr=655176 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=628449  Kr=723560 
  R1:  IPTG + LacI <-> LacIX  Kf=529351  Kr=581313 
  R2:  aTc + TetR <-> TetRX  Kf=851647  Kr=369405 
  T1:  LacIg --> LacIg + LacI  Kf=972058 
  T2:  TetRg --> TetRg + TetR  Kf=49799.3 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=859654 
  T4:  GFPg --> GFPg + GFP  Kf=873912 
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E

d253 

 

 Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 912 792 436 324
Exp2 1014 723 262 157
Exp3 730 883 279 131
Mean 885 799 326 204
Opt 554 554 554 554
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Molecules (16): 
 DR=1226.27 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=35
  LacIX  DR=471867 
  LacIg  IC=1 
  LacIgX 
   DR=89199
 X  DR=7344
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=971965 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=357066 
  D2:  TetR --> 0  Kf=891995 
  D3:  lambda cI --> 0  Kf=971965 
  D4:  GFP --> 0  Kf=1226.27 
  D5:  LacIX --> 0  Kf=471867 
  D6:  TetRX --> 0  Kf=734408 
  PL+:  (lambda cIg) + 2(lambda cI) <-> (lambda cIgX)  Kf=503524  
Kr=819094 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=6727.2  Kr=285612 
  PL1:  LacIg + 4LacI <-> LacIgX  Kf=210194  Kr=160178 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=452829  Kr=314019 
  R1:  IPTG + LacI <-> LacIX  Kf=305309  Kr=862778 
  R2:  aTc + TetR <-> TetRX  Kf=39390.1  Kr=238919 
  T1:  LacIg --> LacIg + LacI  Kf=592507 
  T2:  TetRg --> TetRg + TetR  Kf=114365 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=15662.1 
  T4:  GFPg --> GFPg + GFP  Kf=678922 
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c024 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 14090 471 575 517
Exp2 14355 422 502 311
Exp3 13322 424 540 211
Mean 13922 439 539 346
Opt 7230 392 7230 392
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Molecules (16): 
 DR=122.416 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=313
  LacIX  DR=383603 
  LacIg  IC=1 
  LacIgX 
   DR=25257
 X  DR=9612
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=138530 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=313487 
  D2:  TetR --> 0  Kf=252578 
  D3:  lambda cI --> 0  Kf=138530 
  D4:  GFP --> 0  Kf=122.416 
  D5:  LacIX --> 0  Kf=383603 
  D6:  TetRX --> 0  Kf=961257 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=774422  Kr=271148 
  PL1:  LacIg + 4LacI <-> LacIgX  Kf=885325  Kr=966934 
  PL2:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=868220  Kr=0.007801 
  PT:  TetRg + 2TetR <-> TetRgX  Kf=228857  Kr=172739 
  R1:  IPTG + LacI <-> LacIX  Kf=652946  Kr=123384 
  R2:  aTc + TetR <-> TetRX  Kf=621296  Kr=344235 
  T1:  LacIg --> LacIg + LacI  Kf=569136 
  T2:  TetRg --> TetRg + TetR  Kf=522528 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=832479 
  T4:  GFPg --> GFPg + GFP  Kf=885036 
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E

c101 

 

Repressalator like 

 

 Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 185 8792 238 241
Exp2 176 9264 314 174
Exp3 170 9309 339 266
Mean 177 9121 297 227
Opt 234 9121 234 234
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Molecules (16): 
 DR=101.364 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  LacI  DR=17551.4 
  LacIX  DR=71389.3 
  LacIg  IC=1 
  LacIgX 
  TetR  DR=17542.3 
  TetRX  DR=864751 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=174406 
 a cIg  IC
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=17551.4 
  D2:  TetR --> 0  Kf=17542.3 
  D3:  lambda cI --> 0  Kf=174406 
  D4:  GFP --> 0  Kf=101.364 
  D5:  LacIX --> 0  Kf=71389.3 
  D6:  TetRX --> 0  Kf=864751 
  PL+:  LacIg + 2(lambda cI) <-> LacIgX  Kf=28199.7  Kr=507462 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=687110  Kr=332990 
  PL2:  TetRg + 4LacI <-> TetRgX  Kf=464604  Kr=291449 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=607930  Kr=464387 
  R1:  IPTG + LacI <-> LacIX  Kf=968381  Kr=33058.1 
  R2:  aTc + TetR <-> TetRX  Kf=530238  Kr=670970 
  T1:  LacIg --> LacIg + LacI  Kf=620472 
  T2:  TetRg --> TetRg + TetR  Kf=136641 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=751270 
  T4:  GFPg --> GFPg + GFP  Kf=930047 

 

 

  GFP 
  GFPg

 lambd =1 

 



221 

 

E

c103 

 

Repressalator like 

 

 Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 11489 2538 883 679
Exp2 11207 2360 811 714
Exp3 11220 2425 760 569
Mean 11305 2441 818 654
Opt 6873 6873 736 736
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Molecules (16): 
 DR=130.302 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  LacIX  DR=458104 
  LacIg  IC=1 
  LacIgX 
  TetR  DR=12437.6 
  TetRX  DR=820482 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=433949 
 a cIg  I
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=478905 
  D2:  TetR --> 0  Kf=12437.6 
  D3:  lambda cI --> 0  Kf=433949 
  D4:  GFP --> 0  Kf=130.302 
  D5:  LacIX --> 0  Kf=458104 
  D6:  TetRX --> 0  Kf=820482 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=915203  Kr=262809 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=915203  Kr=262809 
  PL1:  TetRg + 4LacI <-> TetRgX  Kf=75972.3  Kr=946042 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=955199  Kr=52756.8 
  R1:  IPTG + LacI <-> LacIX  Kf=287193  Kr=595386 
  R2:  aTc + TetR <-> TetRX  Kf=955178  Kr=372583 
  T1:  LacIg --> LacIg + LacI  Kf=12102.8 
  T2:  TetRg --> TetRg + TetR  Kf=963035 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=674109 
  T4:  GFPg --> GFPg + GFP  Kf=895548 

 

 

  GFP 
  GFPg

acI  DR=478905 

 lambd C=1 

 



223 

 

xample

E

c113 

 

Repressalator like. E  of contradictory network. 

nv2 Env3 Env4 

 

 Env1 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 13326 1784 395 529
Exp2 13442 1751 446 504
Exp3 13594 1860 501 560
Mean 13454 1798 447 531
Opt 7626 7626 489 489
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Molecules (16): 
 DR=119.564 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
  L
  L
  LacIg  IC=1 
  LacIgX 
  TetR  DR=933.293 
  TetRX  DR=33773.6 
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=265282 
 a cIg  I
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=585969 
  D2:  TetR --> 0  Kf=933.293 
  D3:  lambda cI --> 0  Kf=265282 
  D4:  GFP --> 0  Kf=119.564 
  D5:  LacIX --> 0  Kf=274465 
  D6:  TetRX --> 0  Kf=33773.6 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=818723  Kr=297459 
  PL-b:  LacIg + 2(lambda cI) <-> LacIgX  Kf=818723  Kr=297459 
  PL1:  TetRg + 4LacI <-> TetRgX  Kf=823991  Kr=410017 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=459434  Kr=37165.3 
  R1:  IPTG + LacI <-> LacIX  Kf=155224  Kr=580634 
  R2:  aTc + TetR <-> TetRX  Kf=800675  Kr=345053 
  T1:  LacIg --> LacIg + LacI  Kf=645601 
  T2:  TetRg --> TetRg + TetR  Kf=957150 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=746506 
  T4:  GFPg --> GFPg + GFP  Kf=911824 
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c144 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 33708 4795 518 679 
Exp2 30473 4786 586 605 
Exp3 30690 4993 499 684 
Mean 31623 4858 534 656 
Opt 18241 18241 534 656 
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Molecules (16): 
 DR=49.8234 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=700
 R=50
  LacIg  IC=1 
  LacIgX 
   DR=21150.
 X  DR=82290
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=334013 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=700408 
  D2:  TetR --> 0  Kf=21150.1 
  D3:  lambda cI --> 0  Kf=334013 
  D4:  GFP --> 0  Kf=49.8234 
  D5:  LacIX --> 0  Kf=502657 
  D6:  TetRX --> 0  Kf=822905 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=312709  Kr=25039.6 
  PL2a:  LacIg + 4LacI <-> LacIgX  Kf=793075  Kr=866721 
  PL2b:  TetRg + 4LacI <-> TetRgX  Kf=793075  Kr=866721 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=878762  Kr=643.341 
  R1:  IPTG + LacI <-> LacIX  Kf=450815  Kr=909866 
  R2:  aTc + TetR <-> TetRX  Kf=537540  Kr=925684 
  T1:  LacIg --> LacIg + LacI  Kf=529362 
  T2:  TetRg --> TetRg + TetR  Kf=543542 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=797378 
  T4:  GFPg --> GFPg + GFP  Kf=908813 
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c195 

 

 Env1 Env2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 46152 17778 66269 57863 
Exp2 45979 18337 69483 56723 
Exp3 46683 18581 70244 55822 
Mean 46271 18232 68665 56803 
Opt 45019 37746 57352 37746 
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Molecules (16): 
 DR=10.9113 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 LacI  DR=160
 R=26
  LacIg  IC=1 
  LacIgX 
   DR=435654
 X  DR=85761
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=841397 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=160761 
  D2:  TetR --> 0  Kf=435654 
  D3:  lambda cI --> 0  Kf=841397 
  D4:  GFP --> 0  Kf=10.9113 
  D5:  LacIX --> 0  Kf=264858 
  D6:  TetRX --> 0  Kf=857612 
  PL+:  LacIg + 2(lambda cI) <-> LacIgX  Kf=283743  Kr=95286.9 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=373531  Kr=381048 
  PL1a:  TetRg + 4LacI <-> TetRgX  Kf=322569  Kr=463059 
  PL1b:  (lambda cIg) + 4LacI <-> (lambda cIgX)  Kf=322569  Kr=463059 
  R1:  IPTG + LacI <-> LacIX  Kf=143810  Kr=48128.9 
  R2:  aTc + TetR <-> TetRX  Kf=438482  Kr=599483 
  T1:  LacIg --> LacIg + LacI  Kf=261675 
  T2:  TetRg --> TetRg + TetR  Kf=832260 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=635933 
  T4:  GFPg --> GFPg + GFP  Kf=642495 
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E

c242 

 

  Env1 nv2 Env3 Env4 
IPTG/aTc -/- +/- -/+ +/+ 
Exp1 17494 737 585 436
Exp2 17498 749 598 442
Exp3 17220 662 519 449
Mean 17404 716 568 442
Opt 9060 9060 505 505

 

 

 

 

 

 

 



230 

Molecules (16): 
 DR=87.1502 
  IC=1 

  GFPgX 
  IPTG  (Control Variable) 
 acI  DR=95
  LacIX  DR=504769 
  LacIg  IC=1 
  LacIgX 
   DR=1204
 X  DR=402
  TetRg  IC=1 
  TetRgX 
  aTc  (Control Variable) 
  lambda cI  DR=319297 
  lambda cIg  IC=1 
  lambda cIgX 
 
 
Reactions (22): 
  D1:  LacI --> 0  Kf=955302 
  D2:  TetR --> 0  Kf=12040.9 
  D3:  lambda cI --> 0  Kf=319297 
  D4:  GFP --> 0  Kf=87.1502 
  D5:  LacIX --> 0  Kf=504769 
  D6:  TetRX --> 0  Kf=402519 
  PL-a:  GFPg + 2(lambda cI) <-> GFPgX  Kf=661761  Kr=336800 
  PL1a:  LacIg + 4LacI <-> LacIgX  Kf=566771  Kr=612637 
  PL1b:  TetRg + 4LacI <-> TetRgX  Kf=566771  Kr=612637 
  PT:  (lambda cIg) + 2TetR <-> (lambda cIgX)  Kf=714408  Kr=824584 
  R1:  IPTG + LacI <-> LacIX  Kf=849315  Kr=262558 
  R2:  aTc + TetR <-> TetRX  Kf=340725  Kr=342762 
  T1:  LacIg --> LacIg + LacI  Kf=14984.6 
  T2:  TetRg --> TetRg + TetR  Kf=772419 
  T3:  (lambda cIg) --> (lambda cIg) + (lambda cI)  Kf=938979 
  T4:  GFPg --> GFPg + GFP  Kf=789570 
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