
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Modeling, simulation, synthesis, and optimization
of biochemical networks
Kent Allan Vander Velden
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Cell and Developmental Biology Commons, and the Genetics and Genomics
Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Vander Velden, Kent Allan, "Modeling, simulation, synthesis, and optimization of biochemical networks" (2009). Graduate Theses and
Dissertations. 12243.
https://lib.dr.iastate.edu/etd/12243

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/27?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12243?utm_source=lib.dr.iastate.edu%2Fetd%2F12243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Modeling, simulation, synthesis, and optimization of biochemical networks

by

Kent Allan Vander Velden

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Bioinformatics and Computational Biology

Program of Study Committee:

Peter J. Reilly, Co-Major Professor

Vasant Honavar, Co-Major Professor

Drena L. Dobbs

Irvin R. Hentzel

Robert L. Jernigan

Iowa State University

Ames, Iowa

2009

Copyright © Kent Allan Vander Velden, 2009. All rights reserved.

 ii

Table of contents

Chapter 1. General introduction ..1

Chapter 2. Modeling networks of molecular interactions in the living cell12

Chapter 3. Biochemical network modeling environment ..26

Chapter 4. Parameterization of a nonlinear genotype to phenotype map44

Chapter 5. Values of alleles in a molecular network model are context dependent60

Chapter 6. Model parameter and topology fitting ...86

Chapter 7. Modeling the Guet library of networks..128

Chapter 8. General conclusions ...153

Appendix A. PPN: A Petri Net simulation tool ...156

Appendix B. Additional examples...169

1

Chapter 1. General introduction

Introduction
The design and analysis of biomolecular networks is an ambitious goal of synthetic

biology and genetic engineering1. Both of which may be able to advance by utilizing formal

methods, such as modeling, developed and relied upon in more mature branches of

engineering. Modeling of cellular processes is the application of mathematics to molecular

biology that ideally provides a computational system that accurately describes the phenotype

of the modeled system in response to changing environments, stimuli, and perturbations.

Modeling allows initial experiments to be performed in silico2 through simulation3-7, and can

be used to summarize knowledge or discover and fill in knowledge gaps8. Modeling will

have a more significant role, verifying expectations and identifying potentially undesirable

conditions9, as more complicated constructs are considered.

Until recently, models presented in the literature relied on custom-crafted equations to

approximate the actual process underlying an observed behavior of the modeled system.

Regardless of the accuracies of the approximations, this approach creates models that are

hard to validate or extend, stemming from the difficulty that researchers not trained in math-

ematics have understanding and applying the model10. What has helped modeling to be

accepted as a routine approach in physical sciences and engineering is the identification of

“building blocks” that have consistent properties regardless of their application. Progress has

been made in this direction with the introduction and improvement of biochemical modeling

environments. However, if an analogue to building blocks exists in molecular biology, in

which some research suggests at least topologic building blocks exist11, then the application

of modeling to genetic engineering as a design tool could be made more powerful.

Background and significance

Synthetic biology: Molecular biology currently lacks the structure typical of

engineering; however, several research groups are making progress to develop synthetic

biology4,12-14. Theoretical approaches suggest that motifs are a common part of all

2

networks15,16, and with experimental evidence suggesting their presence in biological

networks11, prototype systems are being constructed that demonstrate the analogues of

building blocks in genetic networks. Examples of engineered regulatory networks to date

include various bi-stable switches17-20, oscillatory systems mimicking circadian clocks21, and

Boolean functions22,23, as well as more systematic and exhaustive efforts24. Lessons learned

from these prototypes are helping to establish design principles9 to enable construction of

more elaborate systems. The most ambitious groups are already attempting to engineer

viruses and a complete minimal organism25,26.

Not all attention has been placed on engineered networks. Other groups have focused on

the interface mechanisms for communication between cells and engineered and indigenous

networks27-29. Further driving the field is the need to understand and manipulate the regul-

atory control of metabolic networks30. Resources that are advancing the field include gene

interaction maps31, protein–protein interaction maps32,33, and large scale protein interact-

ions34-36 surveys across multiple species.

The difficulties of genetic engineering relate not only to the design of networks but also

include the effects of the construct on the viability of the organism. This requires knowledge

of the interactions between other networks in the organism and is presently outside the scope

of current knowledge for all but the most studied organisms. For now, genetic engineers must

remain aware of the possible consequences of incomplete knowledge of the target organism.

Others have taken a network theoretical approach, exploring through simulation the required

properties of a network to exhibit a particular phenotype20,37-39. For the purpose of this

research the networks considered will be restricted to those with associated experimental data

either based on laboratory experiments or generated through simulation.

Synthetic biology – The experiment of Guet: Published network diagrams make the

modeling of regulatory networks look deceptively simple. In practice, most regulation

mechanisms are simply not understood well enough to accurately model an arbitrary

network, a consequence of having limited observations of complex interactions between

arbitrary elements in an incompletely understood network. Guet sought to better understand

regulation by removing several of these unknowns through constructing a library of artificial

gene networks24 containing all possible topologies between three of the best-understood

3

transcription factors. This exhaustive genetic engineering approach provides several new

observations, providing data for new insight into regulation and demonstrating the diversity

of phenotypes possible with just a small number of regulatory elements. Beyond being an

example of successful genetic engineering, the results of this set of experiments provide the

data that form the basis of a validation set for this work.

Modeling formalisms: A modeling formalism is the language in which a network model

is described. It consists of two main components: the presentation and the mechanics12,40.

The formalism’s presentation may consist of raw equations, textual descriptions, or graphical

descriptions. The choice of presentation affects the ease in which a model can be described

and the chance of ambiguities existing in the model. While presentation is limited by the

underlying mechanics, there is no reason that a particular presentation should be any more

constraining than the mechanics.

The formalism’s mechanics concern how a model is actually simulated, such as Boolean,

linear, non-linear, or agent-based41 methods. The choice of mechanics can limit the

explanatory power of the formalism. For instance, linear methods are easier to analyze and

optimize, but they are limited in their abilities to capture certain dynamics or they violate

physical laws such as mass conservation. Likewise, other methods such as stochastic ones

may be more realistic42-44, but they are prohibitively slow to use in general. However, it must

be considered if such dynamics are required for the particular model. A balance must be

formed between generality, performance, and mathematical convenience.

Modeling environments: The modeling environment is an implementation of a

particular formalism that allows the researcher to capture the essence of how a network is

believed to function. Through simulation and comparison to observations, it is possible to

verify if the model is capturing the observed dynamics.

Modeling packages may be generic or specialized for modeling biochemical networks.

Examples of generic packages that have been used include MATLAB, Mathematica, Mobius,

and Excel45. Since a generic package is not directly designed to accommodate the simulation

of network models, either an awkward interface must be used to describe the network or

considerable custom code must be written, both of which can be error-prone.

4

Specialized packages have been released with greater frequency in the past few years to

accommodate the expected needs of systems biology46,47. One of the original packages,

Gepasi48,49, is still one of the most popular. Others include E-Cell50 for simulation of entire

cells, Biospice, and Gene Network Analyzer, and COPASI, which is inspired by Gepasi.

Perhaps the most elaborate system is the Systems Biology Workbench (SBW), which con-

sists of a number of tools that operate together, including Jarnac as the computation engine

and JDesigner as the graphical network design tool. Most specialized packages are

standardizing on a common file exchange format called SBML51, which helps to leverage the

complementary features of each package. Although some packages have a rudimentary

model-fitting mode, they are not suitable, in general, for complex networks52.

Through improvement of the theoretical properties of regulatory networks and

sophistication of the modeling environments, future tools may become the molecular biology

analogue to the computer-aided design software packages currently used by engineers.

Model fitting: The process of model fitting is the assignment of kinetic parameters to the

model so that the model is correctly able to predict the response to stimuli of the modeled

system. If an evaluation function is available to measure the fit of the model to experimental

observations, the process can be viewed as an optimization process. Although much research

has been applied to optimization of metabolic networks52-54, model fitting of regulatory

networks is less refined45,55,56. One reason for this dichotomy is because metabolic networks

are composed of largely static chemical reactions, while regulatory networks are more

transitive by their nature. A problem that is constantly faced when analyzing data from

regulatory networks is that the most easily available data, such as expression chips, can be

misleading57,58.

The choice of formalism has an effect on the ease of model fitting. A nonlinear

formalism, such as one based on differential equations, will naturally be more difficult to

optimize than one based on linear approximation such as s-systems. But ease of optimization

alone is not enough to force a selection of modeling formalism.

Evolution of regulatory networks: Evolution produces apparently complex systems

from supposedly random mutations guided by selection pressure. Computer scientists,

5

inspired by evolution, created the field of evolutionary computation that uses the same

principles thought to be at work in evolution. Nature has been very successful, more than

engineers, in constructing robust systems in noisy environments through evolution. It is

therefore only natural to apply the concepts of evolutionary computation to the problem of

regulatory network modeling.

Evolution of regulatory networks differs from model fitting primarily in the degrees of

freedom available. Model fitting primarily considers alterations of the model parameters

alone with no impact on the model topology. In the evolutionary approach, the topology of

the network is able to change as well as the parameters. Akin to network reverse

engineering59,60 in its goal, evolutionary methods do not rely on statistical inference.

Dissertation organization and accomplishments
This dissertation is divided into eight chapters representing progressive steps toward the

goal of evolving models of biochemical networks that exhibit a phenotype of interest. The

current chapter serves as introduction to the area of biochemical network modeling, with a

brief literature review, and with in-depth review of relevant literature reserved to subsequent

chapters.

Chapter 2 introduces the basis of the modeling formalism that will be used throughout

this dissertation. This chapter was originally an invited paper40 for PNPM 2003 (the 10th

International Workshop on Petri Nets and Performance Models) held at the University of

Illinois at Urbana-Champaign. The workshop audience included applied mathematicians and

computer scientists specializing in modeling the performance of computer networks and

architectures.

Having defined the mathematic formalism that will be used for our models, in Chapter 3

we develop a user-friendly modeling environment that serves as the environment in which

our models are built, evaluated, and compared. We pursued this development instead of using

available packages in order to maintain tight control over the environment, to ensure

extensibility for our research, and to learn the details of the involved methods through

implementation. Alternatives are either restricted to binary-only distributions, are based on

unfamiliar languages, have unreasonable license agreements, or have inadequate

6

performance. This software, referred to as PNE, has been released into the public domain

under the GNU General Public License for anyone to use and modify.

Chapter 4 was originally published in the 2005 proceedings of the Pacific Symposium on

Biocomputing and introduced a method of finding solutions to the equations of our models.

Subsequently we present better methods, but Chapter 4 represents an important step.

Chapter 5 consists of a paper originally published in Genetics61 in which our modeling

environment is used to develop a model of the yeast galactose pathway. We subject this

pathway to genetic selection similar to methods used in breeding simulations, enabling us to

observe the dynamics of populations under selection. This is the first chapter in which we

actually see the simulation of a real biochemical network.

 In Chapter 6 a model-fitting environment is presented that attempts to fit a model to a set

of experimental data by exploring values of free parameters that may include kinetic rates as

well as the model topology. Ideally, measured values for all kinetic parameters would be

available, but such availability is rare. Still rarer is complete understanding of the topology.

A hybrid search strategy comprising a stochastic optimization method (genetic algorithm)

and a local optimization method (simplex) is successfully used despite the presence of

nonlinear dynamics. If given sufficient freedom, the system can be used to evolve new

models as is demonstrated by identifying alternative genetic toggle-switch models. There is

also discussion of how one can quickly estimate network similarity using graph theoretical

algorithms to identify unique networks from the solution sets.

Chapter 7 presents the Guet network library. We first model these networks in PNE using

our understanding of the regulatory elements involved. Then we apply the tool developed in

Chapter 6 to these networks to try to find valid parameters. If building blocks can be

identified that have consistent parameters in different networks, then it should be possible to

construct, using these building blocks, models of new, yet unconsidered, regulatory

networks. If such independence does not exist, it would suggest a nontrivial interaction

within or between the regulatory motifs that is not currently part of the theory of regulation.

Finally, in the last chapter, Chapter 8, we conclude the main part of the dissertation by

considering the preceding chapters retrospectively, summarizing what has been accomplished

and suggesting directions of research that would advance this field.

7

Following the conclusions are two appendices. In Appendix A is an example of how the

modeling environment that we have created can be applied to other domains. PNE is

modified to target Petri Networks and several examples are described. There is considerable

work supporting Petri Network theory and they have been applied to modeling regulatory

networks.

Appendix B contains optimized models each of the Guet networks. Some match the

experimental data while others do not. In some cases, comments have been added describing

unusual properties of the particular network.

Literature cited
1. Bulter, T., Bernstein, J.R., and Liao, J.C. 2003. A perspective of metabolic engineering

strategies: moving up the systems hierarchy. Biotech. Bioeng. 84:815-21.

 2. Francois, P. and Hakim, V. 2004. Design of genetic networks with specified functions by

evolution in silico. Proc. Natl. Acad. Sci. U.S.A. 101:580-5

 3. Hasty, J., McMillen, D., et al. 2001. Computational studies of gene regulatory networks:

in numero molecular biology. Nat. Rev. Genet. 2:268-79.

 4. Kaern, M., Blake, W.J., and Collins, J.J. 2003. The engineering of gene regulatory

networks. Annu. Rev. Biomed. Eng. 5:179-206.

 5. Kaern, M. 2003. Regulatory Dynamics in Engineered Gene Networks. Third Inter. Conf.

Sys. Bio. St. Louis, Ill. U.S.A.

 6. Smolen, P., Baxter, D.A., and Byrne, J.H. 2000. Modeling transcriptional control in gene

networks - methods, recent results, and future directions. Bull. Math. Biol. 62:247-92.

 7. Peccoud, J. and Vander Velden, K.A. Computer system for genotype to phenotype

mapping using molecular network models. No. 1660P. 9-1-2003. U.S.A. patent

application.

 8. von Dassow, G., Meir, E., et al. 2000. The segment polarity network is a robust

developmental module. Nature 406:188-92.

 9. Wall, M.E., Hlavacek, W.S., and Savageau, M.A. 2004. Design of gene circuits: lessons

from bacteria. Nat. Rev. Genet. 5:34-42.

 10. May, R.M. 2004. Uses and abuses of mathematics in biology. Science 303:790-3.

8

 11. Ravasz, E., Somera, A.L., et al. 2002. Hierarchical organization of modularity in

metabolic networks. Science 297:1551-5.

 12. de Jong, H. 2002. Modeling and simulation of genetic regulatory systems: a literature

review. J. Comp. Biol. 9:67-103.

 13. Alon, U. 2003. Biological networks: the tinkerer as an engineer. Science 301:1866-7.

 14. Ferber, D. 2004. Synthetic biology. Microbes made to order. Science 303:158-61.

 15. Milo, R., Shen-Orr, S., et al. 2002. Network motifs: simple building blocks of complex

networks. Science 298:824-7.

 16. Milo, R., Itzkovitz, S., et al. 2004. Superfamilies of evolved and designed networks.

Science 303:1538-42.

 17. Atkinson, M.R., Savageau, M.A., et al. 2003. Development of genetic circuitry

exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597-607.

 18. Cherry, J.L. and Adler, F.R. 2000. How to make a biological switch. J. Theor. Biol.

203:117-33.

 19. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

 20. Thomas, R. 1998. Laws for the dynamics of regulatory networks. Int. J. Dev. Biol.

42:479-85.

 21. Elowitz, M.B. and Leibler, S. 2000. A synthetic oscillatory network of transcriptional

regulators. Nature 403:335-8.

 22. Yokobayashi, Y., Weiss, R., and Arnold, F.H. 2002. Directed evolution of a genetic

circuit. Proc. Natl. Acad. Sci. U.S.A. 99:16587-91.

 23. Setty, Y., Mayo, A.E., et al. 2003. Detailed map of a cis-regulatory input function. Proc.

Natl. Acad. Sci. U.S.A. 100:7702-7.

 24. Guet, C.C., Elowitz, M.B., et al. 2002. Combinatorial synthesis of genetic networks.

Science 296:1466-70.

 25. Smith, H.O., Hutchison, C.A., III, et al. 2003. Generating a synthetic genome by whole

genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc. Natl.

Acad. Sci. U.S.A. 100:15440-5.

9

 26. Rasmussen, S., Chen, L., et al. 2004. Evolution. Transitions from nonliving to living

matter. Science 303:963-5.

 27. Gerchman, Y. and Weiss, R. 2004. Teaching bacteria a new language. PNAS 101:2221-

2.

 28. Bulter, T., Lee, S.G., et al. 2004. Design of artificial cell-cell communication using gene

and metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 101:2299-304.

 29. Kobayashi, H., Karn, M., et al. 2004. Programmable cells: Interfacing natural and

engineered gene networks. Proc. Natl. Acad. Sci. U.S.A. 0402940101.

 30. Segre, D. 2004. The regulatory software of cellular metabolism. Trends Biotechnol.

22:261-5.

 31. Tong, A.H., Lesage, G., et al. 2004. Global mapping of the yeast genetic interaction

network. Science 303:808-13.

 32. Giot, L., Bader, J.S., et al. 2003. A protein interaction map of Drosophila melanogaster.

Science 302:1727-36.

 33. Yook, S.H., Oltvai, Z.N., and Barabasi, A.L. 2004. Functional and topological

characterization of protein interaction networks. Proteomics. 4:928-42.

 34. Jeong, H., Tombor, B., et al. 2000. The large-scale organization of metabolic networks.

Nature 407:651-4.

 35. Jeong, H., Mason, S.P., et al. 2001. Lethality and centrality in protein networks. Nature

411:41-2.

 36. Podani, J., Oltvai, Z.N., et al. 2001. Comparable system-level organization of Archaea

and Eukaryotes. Nat. Genet. 29:54-6.

 37. Tyson, J.J., Chen, K., and Novak, B. 2001. Network dynamics and cell physiology. Nat.

Rev. Mol. Cell Biol. 2:908-16.

 38. Vilar, J.M., Kueh, H.Y., et al. 2002. Mechanisms of noise-resistance in genetic

oscillators. Proc. Natl. Acad. Sci. U.S.A. 99:5988-92.

 39. Stewart, I. 2004. Networking opportunity. Nature 427:601-4.

 40. Vander Velden, K.A. and Peccoud, J. 2003. Modeling networks of molecular

interactions in the living cell: structure, dynamics, and applications. International

Workshop on Petri Nets and Performance Models 10:2-10.

10

 41. Burleigh, Ian, Suen, Garret, and Jacob, Christian. 2003. DNA in Action! A 3D Swarm-

based Model of a Gene Regulatory System. Proc. First Aust. Conf. A. Life. Canberra,

Australia.

 42. Paulsson, J. 2004. Summing up the noise in gene networks. Nature 427:415-8.

 43. Blake, W.J., Kaern, M., et al. 2003. Noise in eukaryotic gene expression. Nature

422:633-7.

 44. Fedoroff, N. and Fontana, W. 2002. Genetic networks. Small numbers of big molecules.

Science 297:1129-31.

 45. Welch, S.M., Roe, J.L., and Dong, Z.S. 2003. A genetic neural network model of

flowering time control in Arabidopsis thaliana. Agronomy Journal 95:71-81.

 46. Ehrenberg, M., Elf, J., et al. 2003. Systems biology is taking off. Genome Res. 13:2377-

80.

 47. Klapa, M.I. and Quackenbush, J. 2003. The quest for the mechanisms of life. Biotechnol.

Bioeng. 84:739-42.

 48. Mendes, P. 1993. GEPASI: a software package for modeling the dynamics, steady states

and control of biochemical and other systems. Comput. Appl. Biosci. 9:563-71.

 49. Mendes, P. 1997. Biochemistry by numbers: simulation of biochemical pathways with

Gepasi 3. Trends Biochem. Sci. 22:361-3.

 50. Tomita, M., Hashimoto, K., et al. 1999. E-CELL: software environment for whole-cell

simulation. Bioinformatics. 15:72-84.

 51. Hucka, M., Finney, A., et al. 2003. The systems biology markup language (SBML): a

medium for representation and exchange of biochemical network models.

Bioinformatics. 19:524-31.

 52. Mendes, P. and Kell, D. 1998. Non-linear optimization of biochemical pathways:

applications to metabolic engineering and parameter estimation. Bioinformatics. 14:869-

83.

 53. Moles, C.G., Mendes, P., and Banga, J.R. 2003. Parameter estimation in biochemical

pathways: a comparison of global optimization methods. Genome Res. 13:2467-74.

11

 54. Yen, J., Liao, J.C., et al. 1995. A hybrid approach to modeling metabolic systems using

genetic algorithm and simplex method. Proc. 11th IEEE Conf. A. Intel. App. 277-83.

Varna, Bulgaria.

 55. Ronen, M., Rosenberg, R., et al. 2002. Assigning numbers to the arrows: parameterizing

a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci.

U.S.A. 99:10555-60.

 56. Wong, P., Gladney, S., and Keasling, J.D. 1997. Mathematical model of the lac operon:

inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.

Biotechnol. Prog. 13:132-43.

 57. Lee, P.S., Shaw, L.B., et al. 2003. Insights into the relation between mRNA and protein

expression patterns: II. Experimental observations in Escherichia coli. Biotechnol.

Bioeng. 84:834-41.

 58. Mehra, A., Lee, K.H., and Hatzimanikatis, V. 2003. Insights into the relation between

mRNA and protein expression patterns: I. Theoretical considerations. Biotechnol.

Bioeng. 84:822-33.

 59. Greller, L.D. and Somogyi, R. 2002. Reverse engineers map the molecular switching

yards. Trends Biotechnol. 20:445-7.

 60. Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models.

Science 303:799-805.

 61. Peccoud, J., Vander Velden, K.A., et al. 2004. The selective values of alleles in a

molecular network model are context dependent. Genetics 166:1715-25.

12

Chapter 2. Modeling networks of molecular interactions

in the living cell

A modified version of an invited article published in The Proceedings of the 10th

International Workshop on Petri Nets and Performance Models (PNPM 2003), University of

Illinois, Urbana, Illinois, USA, September 2-5, 2003

Kent A. Vander Velden1 and Jean Peccoud1
1Pioneer Hi-Bred International, Inc., DuPont Agriculture & Nutrition, 7200 NW 62nd

Avenue, Johnston, IA 50131, USA

Abstract
Interactions occurring in living cells between populations of macromolecules are now

sufficiently understood to model them with some level of realism. Here, the structures and

dynamics of these models are reviewed, and a number of open problems are discussed.

Recent applications of such models indicate that there is a growing need for simulation

environments specifically designed for the life sciences.

Introduction
Fifty years ago, biology became molecular with the publication of the crystallographic

structure of the DNA molecule 1. Since then, life scientists geared their efforts and resources

to the characterization of the molecules involved in the biochemical processes supporting

every aspects of the physiology of all sorts of living organisms spanning a wide range of

organizational complexity. The molecular mechanisms of life turned out to be very similar in

viruses, bacteria, plants, and animals, making their systematic dissection a very appealing

proposition.

If the project is still far from completion, it is already possible to get a global perspective

on the network of chemical reactions taking place in a number of model organisms. The

recent development of databases with the ambition to record systematically and consistently

13

all the reactions described in these organisms is probably the best indicator of the

advancement of this scientific project 2-4. Some of these databases are publicly available on

the Internet, making it easy for a large and diverse community of scientists to access these

data and keep abreast of their developments.

Networks of molecular interactions will be referred to as “molecular networks” in this

document. They form the communication and control systems of living cells. Starting with

individual networks that control fine grain components of the cell, such as uptake and

conversion of molecules, exchanges between networks control more visible responses.

Interactions of genes and proteins, through a variety of regulation mechanisms, comprise

molecular networks and are the mechanisms for responses made to environmental signals and

perturbations. Our research into the arena of molecular networks has touched on several areas

necessary for realistic modeling, simulation, and analysis. Here we briefly present an

overview of this research and the computational challenges it raises.

Structure
Biologists often support textual descriptions of interactions between molecules with

pieces of artwork intended to illustrate the main features of the system dynamics.

Unfortunately, the representation of molecular networks has not been standardized, making

most figures found in the biological literature ambiguous and thus unsuitable for

implementation in software. However, chemists have been using standard notations that can

be adapted to meet the specific requirements of the life sciences.

Chemical equations

Molecular networks can be represented in a unambiguous way as sets of coupled

chemical reactions using chemical equations.

In Equation (2.1) for instance, the first line represents the inactivation of the gene gal4g

by glucose noted Glu. The second reaction represents the expression of the gene, i.e. the

production of one protein molecule by the DNA molecule coding for this protein. The last

reaction represents the spontaneous degradation of the protein.

14

 (2.1)

1

2

3

4

k

k

k

k

gal4g + Glu gal4gX

gal4g gal4g + Gal4p

Gal4p







This type of notation naturally leads to a matrix representation of molecular networks.

The general form of a chemical equation is:

 , ,
1 1

1, 2,
M M

m r m m r m
m m

X X r R 
 

    (2.2)

Equation (2.2) is completely determined by the two MxR matrices  and  called the

reactant and product matrices respectively, and a vector X representing each of the M

molecule species in the system. Data structures used to manipulate molecular networks in

software are usually derived from these two matrices. The difference  is often referred to

as the stoichiometric matrix.

There is a significant specificity in the way these equations are used in the context of

biological molecular networks. Classically in chemistry, chemical equations need to preserve

the mass and numbers of atoms. This constraint is known as the law of atomic balance. In

biology, accounting for all atoms present in the system is not possible due to the size of the

molecules involved. Chemical equations are thus used as a meta-language. Reactions

expressing creation or removal of molecules from the system are permitted and necessary.

Molecular networks define atom-free stoichiometries 5.

Diagrammatic representation

Vol’pert diagrams are graphical representations of sets of chemical equations (Figure

2.1). They offer a global perspective on the model that helps to understand the architecture of

the network. It is often much easier to build a model of medium-sized systems using these

diagrams.

Vol’pert diagrams are flat representations of molecular networks. This becomes limiting

when the number of reactions in a network exceeds 100 or so. Beyond this limit, it becomes

necessary to refine the graphical representation of the networks. Two approaches have been

explored to address this problem:

15

 Hierarchies of diagrams can be defined so that a complex model can be broken

down into several manageable sub-networks.

 A number of reaction mechanisms that are found in virtually all molecular

networks have been characterized. They include mechanisms of enzyme-

catalyzed reactions, mechanisms of gene activation or gene repression, etc. It is

possible to simplify the diagrammatic representation of molecular networks by

introducing new graphical objects corresponding to these canonic mechanisms.

It is naturally possible to combine both solutions. A more difficult problem is the

problem raised by the high dimensions of the state-spaces generated by certain molecules.

Many genes have multiple binding sites for proteins regulating their expression. Some

proteins have several modification sites to which a phosphate group can be attached. For

instance the tumor suppressor protein p53 has at least 12 different modification sites. It can

thus exist in 212 different states. Finding a way of representing all these state variables in a

concise way remains an open problem.

Figure 2.1. Vol'pert diagram of a molecular network

16

Dynamics
The analysis of the dynamics of chemical systems usually relies on differential equations.

In the case of biological systems where the number of interacting molecules is small, it is

more realistic to use stochastic models of molecular interactions. However, the

computational cost of solving these models when their state space is large makes it necessary

to develop approximation solutions.

Differential equations

The mass action rate law is commonly used to describe the kinetics of chemical reactions.

The law states that the rate of a reaction is proportional to the concentration of its reactants.

The generic form of a reaction rate is provided in Equation (2.3).

 (2.3)   ,

1

i r
M

r r i
i

v k X




 

The rate of reaction r is the product of its reactant concentrations. If two molecules of

the same type interact in a reaction, their concentration should appear twice. It is very

convenient to use the reactant matrix as exponents to express these rates in a generic way.

Last, the reaction rate depends on reaction specific kinetic rate constant. It is worth noting

that the dimension of this constant depends on the order of the reaction, i.e. ,
1

M

i r
i



 .

From there it is possible to derive a set of ordinary differential equations (ODEs)

describing the time-evolution of all the state variables. The net time evolution of a molecule

concentration is the difference between the rates of all the reactions producing this molecule

and the rates of all the reactions consuming the molecule. Since a single reaction event can

consume or produce more than one copy of a molecule, the rates need to be adjusted by the

stoichiometric coefficients.

, ,

,

i
i r r i r r

r r

i r r
r

dX
v v

dt

v

 



 



 


 (2.4)

17

ODEs provide a reasonable approximation of the dynamics of populations of molecules

at the thermodynamic limit when the sizes of all populations of molecules are large.

Stochastic process

When modeling at the level of gene regulation, where genes are typically in single copy

numbers, ODE solutions may represent a very poor approximation of the system dynamics.

This observation was formulated in the early 1940s. Max Delbruck probably was the first

author to address this question from a mathematical perspective 6. Soon afterwards, Erwin

Schrödinger commented on the expected fluctuations of the interactions between small

populations of macromolecules confined to the small volume of the living cell 7.

This problem has been addressed from a theoretical perspective by physicists and

chemists during the two following decades 8-11. Their results specified the Markov process

equivalent to the system of ODEs traditionally used in chemical kinetics. The intensity of the

process is sum of the marginal intensities of the reactions. The marginal intensity of a

reaction is the stochastic equivalent of the deterministic reaction rate. It specifies the average

number of occurrences of a reaction by unit of time. Its structure is comparable to the

deterministic reaction rate with a few modifications. As mentioned earlier, the dimension of

the deterministic rate constant depends on the order of the reaction. Since the stochastic

intensity is based on actual molecule numbers and not molecule concentrations, it is

necessary to remove the volume from the kinetic constant. The modification of second term

has to do with the probability of two molecules to interact. In any reaction where one

molecule of each population interacts with molecules of another population, the term is

analogous to the expression of the reaction rates corrected for the volume. If two molecules

of the same population interact, then it is slightly different. A great deal of attention was

brought to justify these terms in the early articles on stochastic models of the chemical

reaction.

   

   

,
1

1 1 ,

!

!
M

i r
i

M
ir

r
i i i r

r
r

Xk
X

X
V

X X






 



 









 (2.5)

18

The dynamics can be represented by a pure jump process defined by two random

variables. The instant of the next jump is exponentially distributed. The next reaction,

destination of the next jump, is also randomly distributed. The probability of each reaction

depends on the weight of its intensity relative to the sum of the intensities of all reactions.

 

   
 

0
0

0

() X s
X

r t
t t r

t

P s e

X
P X X

X














 



 

  
 (2.6)

Donald Gillespie derived from the mathematical definition of the process, a computer

algorithm to perform exact simulations of this process 12,13. A more effective version of this

algorithm has been published recently 14. These methods give excellent results when the

mean time between jumps does not tend to infinitesimal values. When the system becomes

stiff because the rate constant of one reaction is several orders of magnitude larger than the

rate of the slowest reaction or because one population of molecules is several orders of

magnitude larger than the smallest population, the computing cost of this approach becomes

prohibitively expensive. This limitation is currently driving a very active field of research

aiming at finding fast and dependable approximations of this stochastic dynamics.

Approximations

It may seem natural that the stable steady-states of the ODE be associated with the modes

of the stationary distribution of the corresponding stochastic process. However, in general

there is no one-to-one correspondence between equilibrium points and extrema of stationary

distributions 5. Similarly, the mean values of the variables of the stochastic process do not

match the trajectories of the ODEs 15 even though the differences may be negligible. Hence a

practical, but not very rigorous, approach is to use ODEs while building a model and switch

to stochastic simulation after the dynamics appear correct. This allows one to focus on

building a network initially and then explore the effects of stochastic noise later.

To address the need for stochastic simulation, but also the conflicting need for simulation

speed, stochastic approximation methods are being developed. In particular, it has been

demonstrated that under some conditions, the number of jumps occurring during a small time

step can be approximated by a Poisson distribution 16.

19

Another approach would be to develop a hybrid model by partitioning the state-space into

three categories of variables whose dynamics would be represented by a pure jump process, a

diffusion process, and differential equations. This would lead to a generalized Markov

process as it is defined by Gardiner 17. This approach would require some a priori knowledge

of the size of the populations of molecules corresponding to each dimension of the state

space. Since this information is usually not available before the model is simulated, it is

necessary to start by assuming that all variables jump between discrete values and find a way

of approximating the time-evolution of each variable as we go. It is likely that different types

of problems will require different types of approximations.

Software

Upon starting this project, a survey of the software tools available was conducted.

Several applications have been developed to help biologists analyze the emerging properties

of molecular networks. Some applications like Gepasi18,19 or Scamp/Jarnac20 rely on a textual

specification of the models close to the notation used in chemical equations. This approach

quickly becomes impractical when the number of reactions grows beyond 20 to 30 reactions.

A diagrammatic representation of the networks makes it much easier to capture the logic

of larger networks. This observation was the rationale for the development of JDesigner, an

add-on for Jarnac providing a network view of the models. Similarly, Pedro Mendes, who

developed and maintains Gepasi, is currently working on the development of Copasi, which

will also include a diagrammatic representation of the models.

The correspondence between molecular networks and stochastic Petri nets has been

established 21. This made it possible to use software originally designed to analyze the

performability of computer architectures such as UltraSAN or Mobius 22, to solve the

stochastic dynamics of molecular networks.

Simulation solutions are also already available from various vendors and more are

expected in a near future. For instance, Princeton (NJ) based Physiome Sciences, Inc sells a

software package named PathwayPrism™ with features somewhat similar to the Jarnac and

JDesigner combination. A few prominent companies operating in the technical and scientific

computing market are also working on the development of similar simulation platforms.

20

While several systems were available, none met all of our needs in terms of user

interface, representations of models, and capability to switch between differential, stochastic,

and hybrid dynamics. This lack of desired flexibility resulted in the decision to develop in

house our proprietary modeling environment.

In this environment molecular networks are constructed using a graphical language and

internally converted to a series of chemical reactions based on mass action reactions. Most

simulation packages in the life sciences implement various types of rate laws commonly

found in biological systems 23. These specialized kinetics are approximations of the kinetics

of common reaction mechanisms. They can thus to be modeled by the mass action rate law

without the need for introducing specialized rate laws. This approach is entails a small

computation penalty but is safer since it does not rely on any assumption ensuring the

validity of the approximation. It also provides the freedom to explore alternative simulation

and analysis techniques.

Applications
Building models of molecular networks is a way to distinguish aspects of a biological

system that are well documented from those that need to be hypothesized. In some cases, the

properties of models can be used to evaluate the biological realisms of the assumptions upon

which the model was built. Recently, genetic constructs exhibiting complex dynamics have

been engineered based on a prior analysis of molecular networks models.

Knowledge capture

While the ultimate goal of molecular network modeling might be a means to understand

the dynamics of the network, there are intermediate rewards. Identification of weaknesses in

one’s understanding of the network is one such reward. Questions are raised as soon as one

starts to build a model, and become more complicated as one begins to fill in all the

parameters needed for simulation. Frequently, the modeler needs to research or hypothesize

stoichiometric coefficients, reaction and degradation rates, cooperative binding, formation of

complexes etc. Modeling molecular networks is a way to capture the knowledge of biologists

and to formulate working hypotheses.

21

Discovery

The modeling of molecular networks starts with the identification and placing into the

modeling environment interactions between genes, proteins, and possible environmental

factors. During the process of network construction, rate constants must be identified for

each reaction. The rate constants describe the relative speed of each reaction and are equally

important for simulation as the interactions. While interactions are often accessible from the

literature, rate constants are rarely documented and are generally inaccessible through

experiment. Fortunately, robustness seems to be a very common property of biological

networks. Several networks are pretty insensitive to parameter values 24-27. This property

tends to be used as a criterion to assess the biological realism of a model. A model exhibiting

a strong robustness indicates that the assumptions used to build it are to be favored. This

indication can lead to the design of experiments aiming at the verification of these underlying

hypotheses.

Stochastic modeling of molecular networks recently drove a series of experiments aiming

at the experimental observation of molecular noise at the single cell level 28-30. Our

understanding of molecular interactions, in light of these living cells, is being revisited in the

light shed by these new developments. Control mechanisms seem to be able to leverage

molecular noise 31,32, and therefore the stability of molecular clocks to molecular noise is

being investigated 33. Cellular differentiation is analyzed as a first-exit problem 34,35.

Engineering

Models of molecular networks have driven the design of new genetic constructs

exhibiting complex dynamics. In 2000, Elowitz designed the Repressilator, a construct

consisting of three genes repressing each other and leading to the oscillating expression of a

fluorescent protein 36. The same year, Gardner designed a bi-stable construct called a toggle

switch by combining two genes repressing each other 37. Since then, a number of other

constructs have been described (see 38,39 for recent reviews).

Even if practical applications of this new generation of constructs remain to be identified,

they can already be regarded as a turning point in the history of biology. They clearly

demonstrate that we already know enough about interactions between molecules in the living

22

cell to model them with some level of realism. The minimal artificial networks that have

been engineered so far can be compared to simple electrical circuits consisting of a few

resistors, capacitors, and transistors, but it is likely that much more complicated constructs

will be engineered in a near future.

Conclusion
This analogy between molecular networks and electrical circuits leads a number of

scientists to believe that there will soon be a need for CAD applications to design genetic

constructs. This trend is probably best illustrated by the University of California, Berkeley,

which hosted the development of the SPICE circuit simulator and is now supporting the

development of the BioSPICE project. This field of research is rich in opportunities for

modelers, computer scientists, software engineers, and electrical engineers wishing to ride

wave of a systems approach of molecular biology.

Acknowledgments
We are indebted to Lane Arthur, Mark Cooper, Roy Luedtke, Bob Merrill and many

other Pioneer scientists for creating an environment very favorable to this research.

Literature cited
 1. Watson, J.D. and Crick, F.H. 2003. A structure for deoxyribose nucleic acid. 1953.

Nature 421:397-8.

 2. Kanehisa, M., Goto, S., et al. 2002. The KEGG databases at GenomeNet. Nucleic Acids

Res. 30:42-6.

 3. Karp, P.D., Riley, M., et al. 2002. The MetaCyc Database. Nucleic Acids Res. 30:59-61.

 4. Karp, P.D., Riley, M., et al. 2002. The EcoCyc Database. Nucleic Acids Res. 30:56-8.

 5. Erdi, P. and Toth, J. 1989. Mathematical models of the chemical reaction. Manchester

University Press, Manchester, United Kingdom.

 6. Delbrück, M. 1940. Statistical fluctuations in autocatalytic reactions. J. Chem. Phys.

8:120-4.

 7. Schrödinger, E. 1944. What's lifer. Cambridge University Press, Cambridge, United

Kingdom.

23

 8. Bartholomay, A.F. 1958. Stochastic models for chemical reactions: I. Theory of the

unimolecular reaction process. The Bull. Math. Biophys. 20:175-90.

 9. Bartholomay, A.F. 1959. Stochastic models for chemical reactions: II. The unimolecular

rate constant. The Bul. Math. Biophys. 21:363-73.

 10. McQuarrie, D.A. 1967. Stochastic approach to chemical kinetics. J. Appl. Probab.

4:413-8.

 11. Oppenheim, I., Shuler, K.E., and Weiss, G.H. 1969. Stochastic and deterministic

formulation of chemical rate equations. J. Chem. Phys. 50:460-6.

 12. Gillespie, D.T. 1976. A general method for numerically simulating the stochastic time

evolution of coupled chemical reactions. J. Comp. Phys. 22:403-34.

 13. Gillespie, D.T. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem. 81:2340-61.

 14. Gibson, M.A. and Bruck, J. 2000. Efficient exact stochastic simulation of chemical

systems with many species and many channels. J. Chem. Phys. A 104:1876-89.

 15. McQuarrie, D.A. 1964. Kinetics of small systems. II. J. Chem. Phys. 40:2914-21.

 16. Aparicio, J.P. and Solari, H.G. 2001. Population dynamics: Poisson approximation and

its relation to the Langevin process. Phys. Rev. Lett. 86:4183-6.

 17. Gardiner, C.W. 1983. Handbook of stochastic methods for physics, chemistry, and the

natural sciences. Springer-Verlag, Berlin, Heidelberg, and New York.

 18. Mendes, P. 1997. Biochemistry by numbers: simulation of biochemical pathways with

Gepasi 3. Trends Biochem. Sci. 22:361-3.

 19. Mendes, P. 1993. GEPASI: a software package for modeling the dynamics, steady states

and control of biochemical and other systems. Comput. Appl. Biosci. 9:563-71.

 20. Sauro, H.M. 1993. SCAMP: a general-purpose simulator and metabolic control analysis

program. Comput. Appl. Biosci. 9:441-50.

 21. Goss, P.J.E. and Peccoud, J. 1998. Quantitative modeling of stochastic systems in

molecular biology using stochastic Petri nets. Proc. Nat. Acad. Sci. U.S.A. 95:6750-5.

 22. Couvillon, J., Freire, R., et al. 1991. Performability Modeling with UltraSAN. IEEE

Soft. 8:69-80.

24

 23. Heinrich, R. and Schuster, S. 1996. The regulation of cellular systems. Chapman &

Hall, New York.

 24. Alon, U., Surette, M.G., et al. 1999. Robustness in bacterial chemotaxis. Nature

397:168-71.

 25. Barkai, N. and Leibler, S. 1997. Robustness in simple biochemical networks. Nature

387:913-7.

 26. von Dassow, G., Meir, E., et al. 2000. The segment polarity network is a robust

developmental module. Nature 406:188-92.

 27. Wagner, A. 2000. Robustness against mutations in genetic networks of yeast. Nat.

Genet. 24:355-61.

 28. Blake, W.J., Kaern, M., et al. 2003. Noise in eukaryotic gene expression. Nature

422:633-7.

 29. Elowitz, M.B., Levine, A.J., et al. 2002. Stochastic gene expression in a single cell.

Science 297:1183-6.

 30. Ozbudak, E.M., Thattai, M., et al. 2002. Regulation of noise in the expression of a

single gene. Nat. Genet. 31:69-73.

 31. Hasty, J., Pradines, J., et al. 2000. Noise-based switches and amplifiers for gene

expression. Proc. Natl. Acad. Sci. U.S.A. 97:2075-80.

 32. Rao, C.V., Wolf, D.M., and Arkin, A.P. 2002. Control, exploitation and tolerance of

intracellular noise. Nature 420:231-7.

 33. Gonze, D., Halloy, J., and Goldbeter, A. 2002. Robustness of circadian rhythms with

respect to molecular noise. Pro. Nat. Acad. Sci. U.S.A. 99:673-8.

 34. Aurell, E. and Sneppen, K. 2002. Epigenetics as a first exit problem. Phys. Rev. Lett.

88:048101.

 35. Aurell, E., Brown, S., et al. 2002. Stability puzzles in phage lambda. Phys. Rev. E. Stat.

Nonlin. Soft. Matter Phys. 65:051914.

 36. Elowitz, M.B. and Leibler, S. 2000. A synthetic oscillatory network of transcriptional

regulators. Nature 403:335-8.

 37. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

25

 38. Hasty, J., McMillen, D., and Collins, J.J. 2002. Engineered gene circuits. Nature

420:224-30.

 39. Judd, E.M., Laub, M.T., and McAdams, H.H. 2000. Toggles and oscillators: new

genetic circuit designs. Bioessays 22:507-9.

26

Chapter 3. Biochemical network modeling environment

A modified version of a paper to be submitted to Bioinformatics under the title:

GenoDYN: A modeling framework for molecular network analysis

Kent A. Vander Velden 1,2 and Jean Peccoud 3

1Pioneer Hi-Bred International, Inc., DuPont Agriculture & Nutrition, 7200 NW 62nd

Avenue, Johnston, IA 50131, USA
2Bioinformatics and Computational Biology Program, Iowa State University, Ames,

IA 50011, USA
3Virginia Bioinformatics Institute, Washington Street, MC0477, Blacksburg, VA

24061, USA

Abstract
Motivation: The model-driven design of artificial gene networks requires a computa-

tional environment that adapts to this emerging domain concepts and methods used in other

fields of engineering. Traditional gene network simulation software applications do not

enable a hierarchical definition of models, the reuse of previously defined models in larger

models, or the definition of generic performance metrics.

Results: GenoDYN provides an environment for analyzing artificial gene networks.

GenoDYN supports the construction of network models using intuitive graphical

representations of molecules, reactions, and network motifs, with additional controls for

modeling external inputs. GenoDYN also supports analysis of the dynamics of the network

model using continuous or stochastic simulation and built-in visualization tools such as line

and phase plane plots, or time series of statistical distributions. GenoDYN includes a

distributed computing framework for computationally demanding stochastic simulations.

GenoDYN also provides built-in performance evaluation functions as well as user-specified

evaluation functions written in a built-in scripting language.

27

Introduction
Model-driven design of artificial synthetic genetic systems meeting user-defined

specifications is the ultimate vision of synthetic biology 1-9. The development of the first

artificial gene networks relied on a qualitative analysis of the dynamics of small systems of

differential equations 10-12, but this method does not scale up beyond these few proof-of-

concept results. Numerical simulations coupled with the automatic exploration of the design

space 13-17 seems to be an interesting alternative to identifying robust designs capable of

exhibiting desirable phenotypes, but this promising approach has been explored with

software prototypes that lack mature modeling capabilities.

A modeling platform, used in engineering projects, should support the development of an

abstraction hierarchy allowing users to analyze model properties at different levels of

organization 18 by taking advantage of the modularity of artificial genetic systems 19, 20. In

addition, the modeling framework should be capable of expressing the artificial genetic

system inputs as interactions with their physical or biological environment 21. Being able to

define arbitrary functions of the models’ states to express the design performance is essential

to evaluate designs. In addition to streamlining the modeling definition process, the modeling

platform should be integrated with tools to explore the design space by optimizing parameter

values or even the model structure. GenoDYN was developed with these requirements in

mind. It supports a hierarchical definition of models that encourages reuse of previously

defined models. It supports multiple simulation engines that are well integrated with

sophisticated visualization capabilities to enable fast model development iterations. In

situations where the computing cost of simulations exceeds the capability of the workstations

used to run the client applications, users have the possibility to seamlessly execute their

simulations on a dedicated cluster. Evaluating model performance is possible by using built-

in generic functions or model-specific functions developed in a custom scripting system.

Finally, the GenoDYN platform includes higher level applications that can be used for

exploration of the design space.

GenoDYN joins a growing list of software environments used in systems biology for

modeling biological networks 22-25. Inevitably, some of the capabilities of GenoDYN overlap

28

those of others. A recent review of available packages 26 can help prospective users identify

the software solution most suitable for a particular research project.

This report focuses on GenoDYN’s most specific features. Its organization reflects the

modeling workflow by first describing model editing functions. Model simulation and

evaluation are described in the following sections. Model evolution tools are briefly covered

before discussing some of the limitations of this platform and its possible future

developments.

Model definition

Basic editing
GenoDYN presents a canvas view for modeling biochemical networks. Directed edges

between molecules and reactions model product and reactant relationships. Context-sensitive

menus provide a palette of network entities such as a molecules and reactions. Different

categories of molecules are available (e.g. DNA, RNA, proteins, metabolites, complexes) but

the difference between them is limited to their graphical representation. Numerically all

molecules are equivalent. Similarly, GenoDYN reactions are restricted to only mass-action

kinetics. This choice simplifies the design of the simulation engine and makes the model

interactions explicit and valid in all conditions, unlike specialized reaction kinetics that are

valid only under certain assumptions 27.

Sections of a model can be selected, cut, and pasted. Because model entities must have

unique names, when a new model section is introduced by a paste operation, molecule and

reaction names of the new section in conflict with existing names will be suffixed with a

random four-letter string.

The Edit menu includes additional features that help refine the visual representation of

GenoDYN models such as randomized placement, snap to grid, and dynamic layout based on

a ball-spring physics simulation.

Multiple concurrent canvases allow one to work on multiple models simultaneously and

copy and paste sections between models. Models are stored as XML documents that can be

converted to SBML 28 using a transformation language such as XSLT.

29

Environment specification
When modeling a biological system, it is often desirable to evaluate how it reacts to

variations of the physical environment. Examples of such variations are circadian oscillations

of light, temperature, nutrient availability, and changes of the growth medium such as the

addition of gene expression inducers. The physical environment can be represented by

variables that affect the dynamics of the model but are not affected themselves by the time

evolution of the model’s variables. In GenoDYN, control variables are model entities that

can impose a boundary condition on the model dynamics.

Two different types of control variables are available: square wave and interpolated.

Square wave control variables have six parameters, making it possible to represent various

transitions between two different states including periodic oscillations and impulse functions.

Despite the flexibility of the square wave control variables, in some cases it is necessary to

introduce control variables with a very specific dynamics. This would be the case when

analyzing the network response to a set of experimental perturbations recorded in a reactor.

In these cases it is possible to introduce in the model an interpolated control variable whose

dynamics will be specified by importing a text file containing time series values.

GenoDYN calls “environment” a set of parameterizations of the model control variables.

After the number of environments defined on the model has been specified in the

Simulation>Environment>Edit menu, the dynamics of each control variable can

be specified by successively selecting each environment in the drop list of the control

variable definition dialogue.

Hierarchical modeling
GenoDYN supports a hierarchical approach to the definition of complex models by

allowing the reuse of existing models as sub-networks of more complex models. Any

molecule of a model can be exported by checking the corresponding box in the molecule

definition dialogue. This exposes the molecule in the sub-network object, allowing it to be

connected to other entities in the calling model (Figure 3.1). Subnetworks can be edited or

defined directly into the larger models. Alternatively, a subnetwork can be imported directly

from an existing model file. Modifications of the original subnetwork file are not propagated

30

to the models using that file as subnetworks. This feature enables a structured approach to

model development. Complex models can be broken down into more manageable

components that can be analyzed individually before integration in larger models. The

structure of large models becomes more apparent as the entire model can be represented by

various subnetworks corresponding to pathways or components of the global network.

Figure 3.1. Hierarchical model using subnetworks. The model A contains two references to the sub-

model B. Model A includes two parallel pathways from S to P2 and from S’ to P2’. Each pathway is

composed of two Michaelis-Menten mechanisms. In the S to P2 pathway, all the molecular steps are

visible whereas the use of the two subnetworks SN1 and SN2 makes it possible to represent the same

molecular network in a more abstract and compact format in the S’ to P2’ pathway. The three variables

E, S, and P of model B accessible to models at the next level in hierarchy are indicated by a thick black

contour.

In addition, it is possible to build a library of subnetworks corresponding to common

molecular mechanisms or network motifs. Models in a common shared directory can be

directly inserted into a model using the library item of the context-sensitive menu.

Reporting
Models can be documented and exported using different methods. The model diagram

can be copied and pasted into other applications (Edit>Copy to clipboard).

Similarly, the diagram can be saved in SVG and PNG files. A comprehensive report can be

31

generated and saved in a text file (Pathway>View Report). The model can be exported

in different formats to be analyzed in other tools.

Simulation

ODE and stochastic simulation
Chemical kinetics has traditionally relied on Ordinary Differential Equations (ODEs) to

describe the time evolution of molecule concentrations 29. However, concentrations are the

limit of the mean number of molecules per unit of volume when this number tends to infinity.

When a model includes small populations of molecules, its dynamics is better described by a

Markovian jump process with a discrete state space 30, 31. This situation is frequently

encountered in the modeling of gene regulatory networks where only a few copies of

molecules like genes, mRNA, or even some transcription factors are present in living cells.

Hence, GenoDYN provides two modes for simulation: continuous, using CVODE 32 to

solve ordinary differential equations (ODEs), and stochastic, using Gillespie’s direct method
33. Users can switch between the representations that are mathematically equivalent 34. A

typical modeling workflow starts by simulating the ODEs as a means to quickly view the

system dynamics. The Simulation>Options dialogue box allows users to specify the

simulation time frame and the sampling period used to collect data for visualization. The

ODE solvers options allow users to let the solver find the steady state of the model and set

integration parameters that can be used to fine tune the numerical integration.

In models with large numbers of molecules such as metabolic pathways, it may not be

necessary to use another solver. However, for models involving small populations of

molecules such as models including gene expression mechanisms, the model analysis will

involve running the stochastic simulator. Stochastic simulation is valid for any number of

molecules, but its computation time grows rapidly with the number of molecules and the rate

of the fastest reactions. The parameters of the stochastic simulator are limited to the number

of trajectories simulated and the update rate of the simulation visualization. For stiff systems

having reactions occurring at very different rates, stochastic simulations may require

significant computation time 35-37. Simulations can always be aborted by pressing the Esc

key.

32

Visualization
Simulation results are collected by sampling the concentration of each molecule at

regular intervals. The sampling period affects the memory GenoDYN requires by controlling

the number of data points recorded during the simulation. Oversampling simulations could

result in a decrease of performance or excess memory consumption.

Figure 3.2. Visualization of the solution of an ODE model of a molecular network of the

Repressilator. GenoDYN can either plot (A) the time evolution of individual variables or (B) the phase

portrait representing the evolution of a variable as a function of another state variable.

For continuous simulations and stochastic simulations of individual trajectories, users can

display the results as plots of concentration versus time, or as plots of one variable versus

another in the phase plane view (Figure 3.2). Right clicking on any of the plots reveals a

menu that allows users many options to customize the trajectory visualization.

Results from stochastic simulations consisting of ensembles of multiple trajectories are

summarized using a series of concentration distributions over time (Figure 3.3). The resulting

concentration distributions are represented as colored intensity plots representing the

distribution histogram at each sampling time (Figure 3.3). The number of bins used to make

the histograms can be manually set. In addition, it is possible to independently toggle the

33

display of the distribution and its mean. These plots provide an avenue to quickly visualize

the noise and stability of a network.

Finally, data from the plots can be exported to a text file for further analysis in a different

environment.

Figure 3.3. Visualization of the dynamics of stochastic models. (A) represents a single trajectory of

the Repressilator by superimposing on a single plot the evolution of the number of proteins coded by the

three genes in the network. Plot (B) represents the evolution of the statistical distribution of one of the

protein levels estimated from the simulation of 1,000 trajectories. The solid line represents the mean

value of these distributions. Because these trajectories are not synchronized, the distributions do not

oscillate even though individual trajectories do.

Distributed simulation
Stochastic models give a more comprehensive insight into the dynamics of a molecular

network but this benefit comes at a significant computational cost, since estimating the

dynamics of the state variable statistical distributions requires the simulation of numerous

trajectories. This can rapidly lead to significant computation times. Because of the trajectory

independence of the Gillespie algorithm, it is possible to achieve a linear speedup by

distributing the simulations over multiple processors.

Many computational biologists who could benefit from using a distributed computing

environment for stochastic modeling of molecular networks do not have easy access to a

computer cluster or do not have the skills to work in such environment. To eliminate this

barrier to entry into distributed computing, GenoDYN running on a personal computer can be

34

used as a front-end to a cluster or a grid. In the simulation options dialogue, one can specify

the IP address of a remote computer where a calculation server runs in task supervisor mode.

This calculation server receives the specification of a simulation, essentially a serialized form

of the model file, from clients running on user desktops. Once set up, GenoDYN running on

one’s desktop computer sends a model to a centralized task supervisor, which in turn passes

the model to idle calculation workers. The calculation supervisor collects results from the

workers and returns them to the corresponding GenoDYN client. Multiple GenoDYN

instances can be connected to a given calculation supervisor at once, with a dynamic pool of

calculation workers residing within a cluster or an ad hoc distributed computing environment

such as a pool of workstations (Figure 3.4).

Figure 3.4. Distributed computing architecture

The calculation supervisor and the calculation worker use the same binary, which is

independent of the GenoDYN client. The invocation of this binary determines which mode is

used. The workers must be given the IP address of the supervisor and the GenoDYN client

must be given the IP address of the supervisor. The supervisor does not need to be informed

a priori of clients or workers. Both clients and workers are free to come and go and their IP

addresses are discovered upon initial connection with the supervisor. As long as there is at

least one worker, progress will always be made. One potential deployment strategy is to run

workers with low priority on many desktop computers in a department or on a cluster. When

there are available resources they can be utilized by those running GenoDYN. The supervisor

35

and workers require no local access other than to write to an optional log, and can run

without local permissions, thus improving security. Currently the supervisor and worker are

only available on Linux, but this does not restrict the architecture of the GenoDYN client.

Windows-based GenoDYN clients can connect to Linux-based supervisors.

To illustrate the potential benefit of this architecture we have dedicated a small cluster to

GenoDYN. Any GenoDYN user can use the software remote simulation feature by pointing

its client toward xnode1.vbi.vt.edu in the Remote CPU option of the

Simulation>Options menu. This feature does not require a login account or any other

special privileges. Note, however, that this experimental resource is currently limited to a

small number of nodes and would not be able to support large simulation projects.

Model evaluation

Fitness function
GenoDYN supports the definition of fitness functions which are performance variables

defined to evaluate a model. Two evaluation functions are built into GenoDYN: generic and

scripted. The generic fitness function allows the definition of target values for any number of

variables and different environments. The target values are entered using the

Optimization>Fitness function>Options dialog box. Selecting the Generic

fitness function activates the Generic Fitness Function Parameters table. A variable is first

selected along with the target values for each environment defined for the model.

The fitness value of the generic fitness function is computed as the Euclidean distance

between the target and simulated values of the selected variables at the last time point of the

simulation and in each environment. The fitness value is shown in the status bar below the

model canvas. The generic fitness function is a convenient way of testing the match of a

model and a set of experimental measurements or desired behavior.

A more generic way of defining a performance function is to use a built-in scripting

language to define arbitrary functions. The grammar of the scripting language has its basis in

the C language with some extensions for conveniently accessing the model (Table 3.1).

Within the scripting language one can change the rate constants, invoke simulations, and

examine results. Essentially, the only part of the model that is not accessible from within the

36

scripting language is the model topology. While the previously described fitness function

could be implemented within this scripting language (Table 3.2), the dialog box may be more

convenient for first time users.

Global variables holding fitness values (R/W): fitness objective

Initial concentrations (R/W): initial

Rate constant (R/W): kc

Simulation results (RO): result

Simulation invocation: simulate

I/O: print

Math functions:
abs acos asin atan cos sin tan
exp log sqrt sqr

Variable types:
float string int boolean void

Constants: true false

Control structures:
break case continue default do
else for if return switch while

Comments: /*...*/ // ...

Operators: + - * / = ||

&& ^ ! < > %
<= >= != == -- ++ <<

Table 3.1. Scripting language reserved keywords

When performing stochastic simulations fitness functions are currently applied to the first

trajectory. In the future we plan to extend GenoDYN to allow the fitness functions to

examine individual trajectories and statistical summaries of the ensemble of trajectories.

Optimization of model parameters
Once a performance or fitness function is defined, it is possible to examine the sensitivity

of the network’s performance to network parameters or to optimize the network parameters

so as to maximize its performance (relative to the specified evaluation function). The built-in

sensitivity analysis module of GenoDYN displays the values of the evaluation function as

one or two parameters are varied over a range (Figure 3.5). Alternatively, network models

37

constructed in GenoDYN can be exported to independent optimization packages. The authors

have exported models to MATLAB, Mathematica, and Globsol 38, 39 as well as to C code

referencing CVODE.

void main() {
 int i = 0;
 float res[5];
 float target[5];
 target[0] = .5; target[1] = .5;
 target[2] = .5; target[3] = .5;
 target[4] = .5;

 for(i=1; i<=5; i++) {
 kc("Rxn 1") = i/5.0;
 simulate();
 res[i-1] = result("Mol 1", 100);
 }

 fitness = 0;
 for(i=1; i<=n; i++) {
 fitness = fitness + sqr(target[i-1] - res[i-1]);
 }

 fitness = sqrt(fitness);
}

Table 3.2. Example of fitness function script

External to GenoDYN is an implementation of the hybrid genetic simplex algorithm

(HGA), which allows specification of constraints on the allowed range of values for each

parameter, or constraints that tie several model parameters to a single optimized parameter,

thereby reducing the number of parameters to optimize. The HGA also extends the

evaluation function to return both quantitative and qualitative scores, allowing one to identify

networks that have the desired qualitative dynamics, but exhibit a poor fit with experimental

data in quantitative terms and vice versa. As with all optimization routines, care must be

taken to design an evaluation function that reflects the goals of optimization and helps direct

the search for an optimal solution.

Examples
GenoDYN comes with an extensive library of examples that includes various models of

the toggle switch 10, the Repressilator 11, and Guet’s plasmid library 40. We previously

described an extensive analysis of the genetic properties of a model of the galactose switch

38

pathway 41 which is in displayed in the screen shots of in Figure 3.6. The genetic analysis of

this model illustrates well the flexibility of the GenoDYN modeling framework that allowed

us to benefit from a sophisticated graphical user interface to develop the model. After the

model had been defined, GenoDYN was integrated into an optimization environment

specifically designed to conduct the genetic analysis described in this article.

Figure 3.5. Two-parameter sensitivity analysis

Conclusions
GenoDYN has been strongly inspired by our experience of using UltraSAN and later

Möbius, two sophisticated modeling environments developed in the computer science

community to analyze the performance of computer architectures 42, 43. The notion of fitness

function is a biological translation of the reward functions used in performance analysis.

Similarly, the powerful hierarchical models used by Möbius led us to define functionally

comparable model composition operators in GenoDYN.

39

Figure 3.6. The main interface, along with the simulation results and report dialogs.

When analyzing the properties of artificial gene networks, the possibility of defining

control variables and different physical environments greatly facilitates the evaluation of the

network reaction to environmental inputs. We have also dedicated significant efforts to the

implementation of advanced visualization functions that speed up the modeling cycle by

allowing users to quickly understand the dynamics of the model they are building.

GenoDYN’s distributed computing architecture may be one of its most innovative

features. Its implementation is very portable and does not depend on specific middleware.

Users are now one click away from a high performance computing environment allowing

40

them to better analyze the stochastic dynamics of artificial gene networks. We are currently

working to make GenoDYN available on the TeraGrid 44. GenoDYN also provides a C++

framework for designing custom applications, many examples of which are included along

with the GenoDYN source code. GenoDYN is therefore well positioned to be integrated in

the design automation solution currently being developed for synthetic biology 45.

Acknowledgements
This work would not have been possible without the continued support of Peter Reilly

and Vasant Honavar of Iowa State University and Lane Arthur and Chris Martin of Pioneer

Hi-Bred. This work was partly funded by the Virginia Commonwealth Research Initiative.

Literature cited
 1. Serrano, L., Benenson, Y., et al. 2005. Synthetic biology: Applying Engineering to

biology. Eur. Comm. NEST Rep.

2. Endy, D. 2005. Foundations for engineering biology. Nature 438:449-53.

3. Baker, D., Church, G., et al. 2006. Engineering life: building a fab for biology. Sci. Am.

294:44-51.

4. de, L.V., Serrano, L., and Valencia, A. 2006. Synthetic Biology: challenges ahead.

Bioinformatics 22:127-8.

5. Arkin, A.P., and Fletcher, D.A. 2006. Fast, cheap and somewhat in control. Genome Biol

7:114.

6. Chin, J.W. 2006. Programming and engineering biological networks. Curr. Opin. Struct.

Biol. 16:551-6.

7. Ball, P. 2007. Synthetic biology: Designs for life. Nature. 448:32-33.

8. Sayut, D.J., Kambam, P.K., and Sun, L. 2007. Engineering and applications of genetic

circuits. Mol Biosyst 3:835-40.

9. Serrano, L. 2007. Synthetic biology: promises and challenges. Mol. Syst. Biol. 3:158.

10. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

11. Elowitz, M.B., and Leibler, S. 2000. A synthetic oscillatory network of transcriptional

regulators. Nature 403:335-8.

41

12. Judd, E.M., Laub, M.T., and McAdams, H.H. 2000. Toggles and oscillators: new genetic

circuit designs. Bioessays 22:507-9.

13. Francois, P., and Hakim, V. 2004. Design of genetic networks with specified functions by

evolution in silico. Proc. Natl. Acad. Sci. U.S.A. 101:580-5.

14. Rodrigo, G., Carrera, J., and Jaramillo, A. 2007. Genetdes: automatic design of

transcriptional networks. Bioinformatics 23:1857-8.

15. Rodrigo, G., Carrera, J., and Jaramillo, A. 2008. Computational design and evolution of

the oscillatory response under light-dark cycles. Biochimie. 90:888-97.

16. Deckard, A., and Sauro, H.M. 2004. Preliminary studies on the in silico evolution of

biochemical networks. Chembiochem 5:1423-31.

17. Mason, J., Linsay, P.S., et al. 2004. Evolving complex dynamics in electronic models of

genetic networks. Chaos 14:707-15.

18. Goler, J.A., Bramlett, B.W., and Peccoud, J. 2008. Genetic design rising above the

sequence. Trends Biotechnol. 26:538-44.

19. Sauro, H.M. 2008. Modularity defined. Mol. Syst. Biol. 4:166.

20. Hartwell, L.H., Hopfield, J.J., et al. 1999. From molecular to modular cell biology.

Nature 402:C47-C52.

21. Kobayashi, H., Kaern, M., et al. 2004. Programmable cells: interfacing natural and

engineered gene networks. Proc. Natl. Acad. Sci. U.S.A.101:8414-9.

22. Adalsteinsson, D., McMillen, D., and Elston, T.C. 2004. Biochemical Network Stochastic

Simulator (BioNetS): software for stochastic modeling of biochemical networks. BMC

Bioinformatics 5:24.

23. Hoops, S., Sahle, S., et al. 2006. COPASI--a COmplex PAthway SImulator.

Bioinformatics 22:3067-74.

24. Sauro, H.M. 1993. SCAMP: a general-purpose simulator and metabolic control analysis

program. Comput. Appl. Biosci. 9:441-50.

25. Vallabhajosyula, R.R., and Sauro, H.M. 2007. Stochastic simulation GUI for biochemical

networks. Bioinformatics 23:1859-61.

26. Alves, R., Antunes, F., and Salvador, A. 2006. Tools for kinetic modeling of biochemical

networks. Nat. Biotechnol. 24:667-72.

42

27. Heinrich, R., and Schuster, S. 1996. The regulation of cellular systems. Chapman & Hall,

New York.

28. Hucka, M., Finney, A., et al. 2003. The systems biology markup language (SBML): a

medium for representation and exchange of biochemical network models. Bioinformatics

19:524-31.

29. Erdi, P., and Toth, J. 1989. Mathematical models of the chemical reaction. Manchester

University Press, Manchester, United Kingdom.

30. Gardiner, C.W. 1983. Handbook of stochastic methods for physics, chemistry, and the

natural sciences. Springer-Verlag, Berlin Heidelberg New York.

31. Peccoud, J., and Ycart, B. 1995. Markovian modelling of gene products synthesis. Theor.

Popul. Biol. 48:222-34.

32. Cohen, S.D., and Hindmarsh, A.C. 1996. CVODE, a stiff/nonstiff ODE solver in C.

Comp. Phys. 10:138-43.

33. Gillespie, D.T. 1977. Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem. 81:2340-61.

34. Gillespie, D.T. 1977. Concerning the validity of the stochastic approach to chemical

kinetics. J. Stat. Phys. 16:311-8.

35. Griffith, M., Courtney, T., et al. 2006. Dynamic partitioning for hybrid simulation of the

bistable HIV-1 transactivation network. Bioinformatics 22:2782-9

36. Salis, H., and Kaznessis, Y. 2005. Accurate hybrid stochastic simulation of a system of

coupled chemical or biochemical reactions. J. Chem. Phys. 122:54103.

37. Kaznessis, Y.N. 2006. Multi-scale models for gene network engineering. Chem. Eng. Sci.

61:940-53.

38. Kearfott, R.B. 2008. GLOBSOL User Guide. J. Global Optim. in press.

39. Kearfott, R.B., Neher, M., et al. 2004. Libraries, tools, and interactive systems for

verified computations four case studies. Num. Soft. Res. Ver. 2991: 36-63.

40. Guet, C.C., Elowitz, M.B., et al. 2002. Combinatorial synthesis of genetic networks.

Science 296:1466-70.

41. Peccoud, J., Vander Velden, K.A., et al. 2004. The selective values of alleles in a

molecular network model are context dependent. Genetics 166:1715-25.

43

42. Peccoud, J., Courtney, T., and Sanders, W.H. 2007. Mobius: an integrated discrete-event

modeling environment. Bioinformatics 23:3412-4.

43. Goss, P.J.E., and Peccoud, J. 1998. Quantitative modeling of stochastic systems in

molecular biology using stochastic Petrinets. Proc. Natl. Acad. Sci. U.S.A. 95:6750-5.

44. Dong, S.C., Karniadakis, G.E., and Karonis, N.T. 2005. Cross-site computations on the

TeraGrid. Comp. Sci. Eng. 7:14-23.

45. Cai, Y., Hartnett, B., et al. 2007. A syntactic model to design and verify synthetic genetic

constructs derived from standard biological parts. Bioinformatics 23:2760-7.

44

Chapter 4. Parameterization of a nonlinear genotype to

phenotype map

A modified version of a paper published in The Proceedings of the Pacific Symposium on

Biocomputing, Kohala Coast, Hawaii, USA, January 4-8, 2005, pp. 284-95

Jean Peccoud1 and Kent A. Vander Velden1
1Pioneer Hi-Bred International, Inc., DuPont Agriculture & Nutrition, 7200 NW 62nd

Avenue, Johnston, IA 50131, USA

Abstract
Mathematical models of networks of molecular interactions controlling the expression of

traits could theoretically be used as genotype to phenotype (GP) maps. Such maps are

nonlinear functions of the environment and the genotype. It is possible to use nonlinear least

square minimization methods to fit a model to a set of phenotypic data, but the convergence

of these methods is not automatic and may lead to a multiplicity of solutions. Both factors

raise a number of questions with respect to using molecular networks as nonlinear maps. A

method to fit a molecular network representing a bistable switch to various types of

phenotypic data is introduced. This method relies on the identification of the model’s stable

steady states and the estimation of the proportion of cells in each of them. By using

environmental perturbations, it is possible to collect time-series of phenotypic data resulting

in a smooth objective function leading to a good estimate of the parameters used to generate

the simulated phenotypes.

Introduction
Pharmacogenomics’ ambition is to relate a phenotype, the effect of a drug, to the

genotype of patients exposed to environmental conditions partly defined by the drugs they

receive 1. For a geneticist this project requires building a genotype to phenotype map (GP

map) of drug effects. Mathematically, a GP map is a function f such as

45

f ,phenotype genotype environment  . It maps into a phenotypic space, the product of a genetic

space generated by the genetic diversity in a population by the space of environmental

conditions to which individuals of this population can be exposed 2. The simplest GP map is

the one upon which relies Mendelian genetics. The function is Boolean, indicating the

presence or absence of a character. The environment is ignored and genes are considered

independent of each other. Since most traits are quantitative and not binary, the genetics of

quantitative traits relies on a more refined family of GP maps representing the phenotype as

linear statistical models. In general multiple loci are assumed to contribute additively to the

phenotype. In some cases terms representing digenic interactions are introduced. The effect

of the environment on the phenotype is generally decomposed into an additive term and a

genotype by environment term 3.

Just like complex interactions between multiple genetic loci generate a diversity of

phenotypes for pathologies that were considered monogenic 4, responses to drugs are

generally considered multigenic traits 5,6. Many of the genetic determinants controlling the

response to drugs have been identified by a candidate-gene approach relying on the

understanding of the molecular mechanisms of the drug action and metabolism. Integrating

into a mathematical model the network of molecular interactions affecting the response to a

drug is therefore an attractive avenue to build the GP map.

Using different approaches, a number of authors have recently demonstrated that it is

possible to build mathematical models to predict the phenotype controlled by small artificial

gene networks 7-11, larger natural networks 12,13, or even genome-wide metabolic pathways
14,15. In order to use a mathematical model as a GP map it is necessary to bridge the

molecular- and population-levels views of the genotype-phenotype relationship. When using

mass-action models of molecular interactions, it has proved possible to analyze the genetic

properties of a molecular network by associating genetic polymorphism with discrete kinetic

values of the parameter of each interaction 16. The possibility of determining the kinetic

parameters of each interaction is key to using molecular networks as GP maps.

One way to estimate the GP map parameters is to find a set of parameters minimizing the

difference between the phenotype predicted by the model and the observed phenotype. Since

the phenotype is a nonlinear function of the parameters, this problem can be addressed by

46

using a nonlinear least-square approach 17,18. Nonlinear minimization methods are iterative

algorithms that require a set of starting parameter values to converge to a local solution.

Different starting values can result in different solutions with different quality of fit. This

limitation has the potential to prevent a unique determination of the map parameters. The

topology of the molecular network model and the experimental design both contribute to

shape the objective function being minimized. The number and geometry of its local minima

determines the possibility to find and identify solutions corresponding to the actual

parameters’ values that generated the set of observed phenotypes. Since for many real

molecular networks, it is not possible to explore the entire parameter space, it is possible that

no starting parameter values will converge toward the actual parameter set. It is also possible

that many starting values will result in many solutions with similar fits, making it impossible

to distinguish the solutions closest to the actual parameter set. Few authors used nonlinear

least-square minimization to estimate GP map parameters 19,20 and it is likely that a number

of people attempted this without success and never published their negative results.

This paper introduces an algorithm to estimate the parameters of a molecular network

from time-series of molecular phenotypes collected after an environmental perturbation. The

objective function used takes into consideration the possibility that phenotypic data collected

at the cell population level result from a random distribution of the cells among multiple

stable-steady states. The presence of a positive feed-back loop 21 creates the possibility of

multistationarity. Multiple steady states have been observed in artificial gene networks 22-26

but also in natural regulatory networks 27, for which this possibility had not been considered

even recently 28.

The algorithm considered in this article is automatic and can be applied to virtually any

mass action model of molecular networks without requiring any manual mathematical

derivation.

Methods

Model

The model used in this article is a mass action equivalent of a model of a bi-stable switch
29-31. In the list of reactions below, Gi and GXi refer to the active and inactive forms of the ith

47

gene coding for the protein Pi, respectively, while Li represents the ith ligand and PXi the ith

protein complexed with its ligand.

 (4.1)

1

2

3

4

5

6

7

8

9

10

1 1 1 1

2 2 2 2

3 1

4 2

5 6 2 1 2

7 8 1 2 1

9 10 1 1

R :
Gene expression

R :

R :
Protein degradation

R :

R ,R : 2
Repression

R ,R : 2

R , R :

k

k

k

k

k

k

k

k

k

k

G G P

G G P

P

P

G P GX

G P GX

P L PX

  


  
  


 
 


 








11

12

1

11 12 2 2 2

Repressor-ligand interaction
R , R :

k

k
P L PX





 


The time-evolution of the model is represented by mass-action differential equations. The

set of coupled differential equations can automatically be derived from the chemical

equations Equation (4.1)32.

Mass conservation relationships can be used to eliminate some variables from the model.

Assuming that there is only one copy of each of the two genes in the system, the first mass-

conservation relation makes it possible to eliminate the repressed forms of the genes. We also

assume that the interaction between the small molecules representing the environment and

the repressors are much faster than the other reactions. Using a quasi-steady state

approximation, we eliminate R9 to R12 from the model. This results in the list of reaction

rates below where is the vector representing the state of the system and ri the rate of the

reaction Ri:

X

   

     

   

     

2

1 1 1 5 5 2 1
11

2 2 2 6 6 21

2
2

3 3 1 7 7 1 2
2 2

4 4 2 8 8 1

1

1

1
with ,

1

1

1

r k G r k G P
LG

r k G r k GP

P
r k P r k G PG L

r k P r k G

  
       
      



          
  

X X

X X
X

X X

X X 

 (4.2)

The differential equation representing the time evolution of the system is derived from

this list of reaction rates.

48

Numerical identification of the steady states

The most generic way of finding steady states is to find the solutions of Equation (4.3)

below. The notation below indicates that the reaction rates depend on the parameterization of

the model, , and the environment,  1 8,...,k kK   1 2,L LE :

  

   
        
        

   

8 7

1 3 6 5

2 4 8 7

6 5

2d
, , 0

2dt

r r

r r r r

r r r r

r r

 
          
  

X X

X X X XX
F X E K

X X X X

X X



 (4.3)

Roots can be determined by minimizing  F X starting from any point in the model state

space. Since Equation (4.3) is nonlinear, it is not possible to analytically find its solutions. In

order to alleviate this limitation, a grid of starting points is created in a region of the state

space expected to include all the biologically relevant steady states of the model.

Variables corresponding to conserved molecules are bounded by the initial conditions.

Assuming that each gene in the model has a single copy, then 0 1 with 1, 2iG i   . The

asymptotic values of the non-conserved molecules, i.e. proteins in this case, is somewhere

between 0 and production degradationk k , the asymptotic value corresponding to the maximum

expression of the gene. Therefore, in the case of the model considered here, all the steady

states are expected to be within 1 3 2 4[0,1]x[0,]x[0,]x[0,1]V k k k k .

It is therefore possible to regularly sample V with a user-specified resolution. By starting

the minimization algorithm from each point in this grid, a numerical solution to Equation

(4.3) will generally be found for each starting point. Numerical errors and differences of

convergence toward the same limits will result in minor numerical differences between

solutions reached from different starting conditions. If the distance between a solution and

another previously found solution is less than some specified value, it is assumed that they

are identical.

After the scan of V is complete, the stability of the steady states is analyzed by

computing, at the steady state, the eigenvalues of the Jacobian matrix associated with

Equation (4.3). If the real parts of all eigenvalues are negative, then the steady state is stable.

49

Fitting to asymptotic phenotypes

In the context of this article, “asymptotic phenotypes” refers to phenotypic data collected

in the stationary regime 33,34 in different environments with 1,...,jE j  . Since in general all

variables of the model cannot be observed, the number of data points collected in each

environment  is less than M, the total number of state-variables of the model. It is

convenient to represent asymptotic phenotypes as a X  Pmatrix . Now that the

experimental data set is structured, it is necessary to generate a predicted phenotype  Q K

corresponding to a given set of parameters K. Assuming that it is possible to compute  Q K ,

then the least-square distance that needs to be minimized to fit the model to the phenotypes,

, is:  ,d K P

E       2

1 1

, ,i j i j
i j

d Q K E P
 

 

   K P (4.4)

Computing the predicted phenotype for a specified environment and set of parameters is

immediate if they result in a single stable steady state S. In this case:

    , , 1,..., 1,...,i j i j i j   S K E Q K E . (4.5)

In conditions where the model has two stable steady states S and T, then the observed

phenotype P is likely to result from a distribution of cells in the two steady states. So, instead

of having a direct correspondence between the predicted phenotype and the observed

phenotype, the predicted phenotype is a weighted average of the two stable steady states.

What is not known, though, is the proportion of cells in each of the steady states. This

proportion needs to be estimated by solving a linear constrained least-square problem:

           
[0,1]

, , 1 ,min


 


   Q K E S K E T K E P E . (4.6)

This approach can be generalized to more than two stable steady states.

Fitting to a time series of phenotypes

Observing the model state variables at different points in time is a natural way of

collecting data characterizing the model dynamics 35,36. Many experimental designs can lead

to this type of data. Only a single simple experiment is considered in this paper but it

50

demonstrates that system multi-stationarity needs to be considered to properly analyze the

data.

A cell population is placed in a first environment E1 until it reaches a stationary regime

indicated by the stabilization of the phenotype. An instantaneous perturbation is applied to

the environment, creating a new environmental condition E2. Phenotypic data are recorded at

different time points while the population stabilizes toward a new stationary regime. For

instance, cells can be grown in absence of ligands. One of the ligands is added to the growth

medium creating a new environment. Samples of cell culture are taken and phenotyped at

different points in time after the ligand has been added. This design can be generalized to

multiple environmental perturbations. E1,j and E2,j refer to first and second environments of

the jth perturbation. The first phenotype of each time series is collected in the stationary

regime before the perturbation is applied. All other phenotypes are collected in the second

environment and are indexed by the instant of observation. Similarly, it is necessary to

compute a series of predicted phenotypes corresponding to the series of experimental data.

The distance between the predicted and the observed phenotypes is computed by summing

the distance over all time-points:

      2

2, 2,
1 1 1

, , ,i j k i j k
k i j

d t
 

  
, t   K P Q K E P E (4.7)

Let be the solution of Equation (4.3) starting from . Computing the

predicted phenotype for a specified environmental perturbation and set of parameters is

immediate if the initial environment and parameter set result in a single stable steady state

. In this case the predicted phenotypes are extracted from the solution of Equation

(4.3) starting at :

 0 , , ,G X K E



,S K

t 0X

 1,S K E

 1E     1 2 2,, , , , , ,k i j kG t S K E K E Q K E t . If the parameter set leads to two

steady states in the initial environment  1,S K E and  1,T K E , then it is possible to estimate

the proportion  just as in Equation (4.6). The predicted phenotype would then be a

weighted average of trajectories starting from the two initial conditions S and T.

Application

The number of variables observed in the phenotype and the number of environments

where the phenotypes are observed are likely to have a significant impact on the possibility

51

to match the model with phenotypic data. So, phenotypic data were simulated in different

numbers of environments and by recording different numbers of observed variables.

Twelve series of phenotypic data were generated using the same set of parameters. The

first six phenotypes were asymptotic phenotypes. The second group of six phenotypes were

time series.

In both cases (asymptotic and time series), three of the phenotypes consisted in the

observation of one protein, . In the remaining three phenotypes the values of both proteins

were recorded in the phenotype.

1P

The asymptotic phenotypes were simulated in three different numbers of environments

(three, five, and nine environments). Environments are represented by the concentrations of

the two ligands, (L1, L2). The first three environments were: (0,0), (101, 0), and (0, 101). In

the five-environments experiments, (1, 0) and (0, 1) were added to the first 3 environments.

In the nine-environments experiments (10-1, 0), (10-2, 0), (0, 10-1), and (0, 10-2) were added to

the five previous environments.

The times series phenotypes are transitions between two environments. In the first

experiment, the transition from (10, 0) to (0, 10) was simulated. In the two-transition

experiment, the transition from (5, 0) to (0, 5) was added. In the three-transition experiment,

the transition from (1, 0) to (0, 1) was added to the two previous transitions.

The same set of 25 initial parameter values was used to fit the model to the asymptotic

and time-series phenotypes, resulting in a series of 300 optimizations.

Results

Numerical identification of steady states

The method to find the steady states of the model works well on this model. By using

only the eight “corners” of V, it seems that all the steady states of the system were found.

Increasing the resolution of the grid did not result in a larger list of steady states. Depending

on the environment and parameter values, two types of regimes were found: a single stable

steady state or two stable steady states and one unstable steady state.

52

In the least-square minimization procedures, the specificity of this network made it

possible to use only two initial conditions  1 30.5, ,0,0.5k k and  2 40.5,0, ,0.5k k to find the

stable steady states of the system. This simplification speeds up the optimization process that

often requires hundreds or even thousands of steady state determinations. These two initial

conditions do not allow the identification of the unstable steady states of the system and this

approach may not be applicable to other models.

A bifurcation diagram was generated by computing the steady states (stable and unstable)

of the model over a range of L1 concentrations in order to verify the steady state

identification procedure while the concentration of the second ligand was kept at zero. The

system is bi-stable for low concentrations of L1 and beyond a critical concentration, the

system becomes mono-stable. This result is consistent with the bifurcation diagram of a

similar model 37 and also with our own bifurcation analysis run in XPP/AUT 38. The

positions of the stable steady states are not very much affected by the concentration of L1,

except in the vicinity of the critical concentration. This indicates the robustness of the

phenotype to environmental perturbation.

Fitting to asymptotic phenotypes

An exploration of the neighborhood of the original set of parameters used to generate the

phenotypes indicated that initial conditions very close to the original parameter set could not

lead to a good fit (data not shown). This indicated that the objective function was rough and

may be difficult to minimize. It turned out that convergence was much easier to achieve than

initially anticipated. When the phenotype included the two protein concentrations a good fit

was achieved for ⅓ of the initial conditions.

This can be explained by observing that an infinite number of parameterizations have the

same steady states. Solutions of Equation (4.3) verify Equation (4.8). The minimization

problem defined by asymptotic phenotypes is unidentifiable. It is not possible to estimate the

eight kinetic parameters but only the four equilibrium constants.

53

     

   
   

     

2

8 7 8 1 7 1 2
2

1 3 1 1 3 1

2 4 2 2 4

2

6 5 6 2 5 2 1
1

1
1 0

1

0

0

1
1 0

1

r r k G k G P
L

r r k G k P

r r k G k P

r r k G k G P
L

 
      
   

   

 
      

X X

X X

X X

X X

 (4.8)

Fitting to time series of phenotypes

The convergence criteria used in this case was a root mean square of residuals less than

10-1. Using this criterion, 14 convergences were observed (9% of the 150 optimizations using

time series phenotypes) that can be broken down into 13% of convergence when only one

protein is observed and 5% when both proteins are recorded. These rates of convergence

need to be confirmed by analyzing a larger number of initial conditions using a faster

implementation of this algorithm. However, they are surprisingly high and indicative of a

relatively smooth performance function.

All optimization solutions were indexed (not shown) for further analysis. In some cases

very similar solutions were found. For instance solution 13 is very close to solution 14 and

solution 11 is very close to solution 12. It is worth observing that if solutions 11, 13, and 14

all originated from the same initial condition, solution 12 was found using a different initial

condition. Also solutions 11 and 12 are not very far in the parameter space from solutions 13

and 14. Solution six is also located in the same area. Interestingly, these five solutions are all

very close to the original set of parameters used to generate the phenotype. The solutions

were verified by plotting the time course of the two protein concentrations and the profiles

are consistent with the objective function used to generate the solutions. Protein

concentrations corresponding to solution 11 were plotted over a wide range of initial

conditions. Visually they are indistinguishable from the plots generated by the original set of

parameters (Figure 4.1).

54

Figure 4.1: In order to visually assess the quality of the fit, the ODE was integrated using two

solutions of the time-series optimization experiment and the original set of parameters used to generate

the simulated phenotypes. The initial condition for the integration was set to (1, 0, 10, 0) and the

environment to (0, 10). Solution six (top) was found when only one protein level was used in the

phenotype. It is interesting to see that the fit for P1 is better than the fit for P2. The RMS computed using

the two protein concentrations at the 11 time points is 0.83. Solution 11 (bottom) gives a very good fit of

both of the protein expression profiles leading to a RMS of 0.06. It is necessary to zoom in on specific

region of the plot to be able to visually distinguish the trajectories generated by the original parameter

set and the trajectories generated by the parameters of Solution 11.

Discussion

Results

Even though this work focuses on a single molecular network model, results presented

here are likely to be relevant to other models.

 The specific structure of molecular networks makes it possible to search for

steady states in a limited volume of the model state space.

 The possibility of multi-stability should always be considered. In a population of

cells observed in a stationary regime, cells can be randomly distributed between

multiple steady states. Therefore, the measurement of a gene activity at the cell

population level is a weighted average of the molecule concentrations

55

corresponding to the different stable steady states of the model. For a given set of

parameter values, different repartitions of the cells in the different steady states

lead to different qualities of fit between the model parameterization and the

observed phenotypes. In the context of this paper, a linear minimization step was

introduced to find the repartition minimizing the distance between the model and

the experimental data.

 Asymptotic phenotypic data can only lead to the determination of the equilibrium

constants but not the kinetic constants.

 Environmental perturbations can be used to collect time-series of phenotypic data.

The relaxation profile observed is a weighted average of trajectories originating

from the different stable steady states in the first environment.

Necessary improvements of the algorithm

In order for this method to be used for routine analysis it will be necessary to address a

few issues.

 The steady state finding algorithm needs to be systematically validated. In some

cases very stiff parameter sets hampered the convergence of the steady state

identification procedure. The reasons for this behavior need to be understood.

Since the steady state identification algorithm is the bottleneck of the whole

optimization process it is worth trying to improve it.

 Determining the stability of the steady states is also an important step of the

algorithm. Numerical errors prevent an accurate determination of the stability in

the vicinity of critical points. It is not clear what is the impact of this issue on the

outcome of the minimization process. Limit cycles are not considered in this

algorithm.

 The local optimization method described in this paper needs to be coupled to a

global search strategy to explore the parameter space more systematically.

 In cases where the time of sampling cannot be controlled, it could be necessary to

take the actual sampling time into consideration when fitting the model to the

data.

56

 A random term representing the measurement error needs to be added to the

phenotypic data. The effect of this term on the convergence of the least-square

minimization should be characterized. The addition of an error term would

transform the least-square minimization problem into a nonlinear regression

problem that could lead to computing confidence intervals for the parameter

estimates.

Research directions

We are working on a generalization of this algorithm to handle phenotypic data collected

on a multiplicity of genotypes just like several environmental conditions have been

considered in this paper. Along the same line, the current model assumes only one copy of

each gene. Introducing a diploid genome with two homologous copies of each gene would

require predicting the phenotype of heterozygous individuals, which requires developing a

model of dominance at the parameter level. If only homozygous individuals are considered or

a total dominance is assumed, the model would remain unchanged.

Geneticists have been building models of the genotype to phenotype relationship for traits

of other organisms for more than a century. By deciphering networks of molecular

interactions, they hope to be able to build nonlinear GP maps inspired by the mechanisms

controlling the expression of complex traits. It is expected that these maps would capture

epistatic interactions between the genetic determinants contributing to these traits. Such a

map would help a breeder to define more effective breeding strategies using molecular

markers to manipulate alleles of genes contributing to trait variations or using transgene to

introduce new sources of genetic variation, help a human geneticist to better understand how

multiple genes can contribute to the development of a pathology, and help

pharmacogeneticists to customize a medication to the genotype of their patients.

Mathematical methods, such as those described here, are needed to analyze molecular data.

The next challenge may be to find ways of associating macroscopic phenotypes such as a

patient response to a treatment, with the molecular data we collect and analyze.

57

Acknowledgements
We are grateful to Mark Cooper, Chris Winkler, Dean Podlich, David Bickel, Bard

Ermentrout and four anonymous reviewers for valuable comments and suggestions. This

work would not have been possible without the support of Lane Arthur and Bob Merrill.

Literature cited
 1. Evans, W.E. and Relling, M.V. 2004. Moving towards individualized medicine with

pharmacogenomics. Nature 429:464-8.

 2. Cooper, M., Chapman, S.C., et al. 2002. The GP Problem: quantifying gene to phenotype

relationships. In Silico Biol. 2:151-64.

 3. Falconer, D.S. and MacKay, T.F.C. 1996. Quantitative Genetics. Longman Group Ltd.,

Harlow, United Kingdom.

 4. Weatherall, D.J. 2001. Phenotype-genotype relationships in monogenic disease: lessons

from the thalassaemias. Nat. Rev. Genet. 2:245-55.

 5. Evans, W.E. and Relling, M.V. 2004. Moving towards individualized medicine with

pharmacogenomics. Nature 429:464-8.

 6. Evans, W.E. and McLeod, H.L. 2003. Pharmacogenomics--drug disposition, drug targets,

and side effects. N. Engl. Med. 348:538-49.

 7. Hasty, J., McMillen, D., and Collins, J.J. 2002. Engineered gene circuits. Nature

420:224-30.

 8. Kaern, M., Blake, W.J., and Collins, J.J. 2003. The engineering of gene regulatory

networks. Annu. Rev. Biomed. Eng. 5:179-206.

 9. Atkinson, M.R., Savageau, M.A., et al. 2003. Development of genetic circuitry exhibiting

toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597-607.

 10. Kramer, B.P., Viretta, A.U., et al. 2004. An engineered epigenetic transgene switch in

mammalian cells. Nat. Biotechnol. 22:867-70.

 11. Isaacs, F.J., Hasty, J., et al. 2003. Prediction and measurement of an autoregulatory

genetic module. Proc. Natl. Acad. Sci. U.S.A. 100:7714-9.

 12. Ozbudak, E.M., Thattai, M., et al. 2004. Multistability in the lactose utilization network

of Escherichia coli. Nature 427:737-40.

58

 13. Setty, Y., Mayo, A.E., et al. 2003. Detailed map of a cis-regulatory input function. Proc.

Natl. Acad. Sci. U.S.A.. 100:7702-7.

 14. Covert, M.W., Knight, E.M., et al. 2004. Integrating high-throughput and computational

data elucidates bacterial networks. Nature 429:92-6.

 15. Patil, K.R., Akesson, M., and Nielsen, J. 2004. Use of genome-scale microbial models

for metabolic engineering. Curr. Opin. Biotechnol. 15:64-9.

 16. Peccoud, J., Vander Velden, K.A., et al. 2004. The Selective Values of Alleles in a

Molecular Network Model Are Context Dependent. Genetics 166:1715-25.

 17. Bates, D.M. and Watts, D.G. 1988. Nonlinear regression analysis and its applications.

John Wiley & Sons, New York.

 18. Dennis, J.E. and Schnabel, R.B. 1983. Numerical methods for unconstrained

optimization and nonlinear equations. Prentice Hall, Inc., Englewood Cliffs, NJ.

 19. Setty, Y., Mayo, A.E., et al. 2003. Detailed map of a cis-regulatory input function. Proc.

Natl. Acad. Sci. U.S.A. 100:7702-7.

 20. Ronen, M., Rosenberg, R., et al. 2002. Assigning numbers to the arrows: parameterizing

a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci.

U.S.A. 99:10555-60.

 21. Thieffry, D. and Thomas, R. 1998. Qualitative analysis of gene networks. Pac. Symp.

Biocomput. 77-88.

 22. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

 23. Kramer, B.P., Viretta, A.U., et al. 2004. An engineered epigenetic transgene switch in

mammalian cells. Nat. Biotechnol. 22:867-70.

 24. Atkinson, M.R., Savageau, M.A., et al. 2003. Development of genetic circuitry

exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597-607.

 25. Tchuraev, R.N., Stupak, I.V., et al. 2000. Epigenes: design and construction of new

hereditary units. FEBS Lett. 486:200-2.

 26. Isaacs, F.J., Hasty, J., et al. 2003. Prediction and measurement of an autoregulatory

genetic module. Proc. Natl. Acad. Sci. U.S.A. 100:7714-9.

59

 27. Ozbudak, E.M., Thattai, M., et al. 2004. Multistability in the lactose utilization network

of Escherichia coli. Nature 427:737-40.

 28. Setty, Y., Mayo, A.E., et al. 2003. Detailed map of a cis-regulatory input function. Proc.

Natl. Acad. Sci. U.S.A. 100:7702-7.

 29. Kramer, B.P., Viretta, A.U., et al. 2004. An engineered epigenetic transgene switch in

mammalian cells. Nat. Biotechnol. 22:867-70

 30. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

 31. Tchuraev, R.N., Stupak, I.V., et al. 2000. Epigenes: design and construction of new

hereditary units. FEBS Lett. 486:200-2.

 32. Peccoud, J., Velden Velden, K.A., et al. 2004. The selective values of alleles in a

molecular network model are context dependent. Genetics 166:1715-25.

 33. Setty, Y., Mayo, A.E., et al. 2003. Detailed map of a cis-regulatory input function. Proc.

Natl. Acad. Sci. U.S.A. 100:7702-7.

 34. Guet, C.C., Elowitz, M.B., et al. 2002. Combinatorial synthesis of genetic networks.

Science 296:1466-70.

 35. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

 36. Kramer, B.P., Viretta, A.U., et al. 2004. An engineered epigenetic transgene switch in

mammalian cells. Nat. Biotechnol. 22:867-70

 37. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

 38. Ermentrout, B.G. 2002. Simulating, Analyzing, and Animating Dynamical Systems: A

Guide to Xppaut for Researchers and Students. Society for Industrial Mathematics.

Philadelphia.

60

Chapter 5. Values of alleles in a molecular network

model are context dependent

A modified version of a paper published in the journal Genetics, Vol. 166, 1715-

1725, April 2004

Jean Peccoud1, Kent A. Vander Velden1, Dean Podlich1, Chris Winkler1, Lane

Arthur1, and Mark Cooper1
1Pioneer Hi-Bred International, Inc., DuPont Agriculture & Nutrition, 7200 NW

62nd Avenue, Johnston, IA 50131, USA

Abstract
Classical quantitative genetics has applied linear modeling to the problem of mapping

genotypic to phenotypic variation. Much of this theory was developed prior to

availability of molecular biology. The current understanding of the mechanisms of gene

expression indicates the importance of non-linear effects resulting from gene interactions.

We provide a bridge between genetics and gene network theories by relating key

concepts from quantitative genetics to the parameters, variables, and performance

functions of genetic networks. We illustrate this methodology by simulating the genetic

switch controlling the galactose metabolism in yeast and its response to selection for a

population of individuals. Results indicate that genes have heterogeneous contributions to

phenotypes and that additive and non-additive effects are context dependent. Early cycles

of selection suggest strong additive effects attributed to some genes. Later cycles suggest

the presence of strong context dependent non-additive effects that are conditional on the

outcomes of earlier selection cycles. A single favorable allele cannot be consistently

identified for most loci. These results highlight the complications that can arise with the

presence of non-linear effects associated with genes acting in networks when selection is

conducted on a population of individuals segregating for the genes contributing to the

network.

61

Introduction
Recently there has been interest in interpreting the quantitative genetic properties of

gene networks at the population level 1,2. This is warranted on at least three grounds: (i)

much of the molecular genetic evidence points to the roles of genes in non-linear

networks in the determination of gene-to-phenotype relationships, (ii) we have a growing

body of data on the structural and functional properties of the genomes of organisms and

as this pool of data continues to expand it is becoming more feasible to construct models

of gene networks, and (iii) for many aspects of basic and applied genetics it is necessary

to study the properties of allelic variation for genes at the level of phenotypic effects and

variation within populations. Bridging the molecular and population level views of gene-

to-phenotype relationships is a challenging area of research for quantitative genetics. At

present there is no agreed upon quantitative framework but a number of approaches are

being investigated. We constructed a model of the gene network controlling the galactose

metabolism pathway in yeast using differential equations. This model has been used as a

genotype to phenotype map with which to evaluate the performance of individuals in

simulations of a mass selection process. Combining these two approaches makes it

possible to analyze the epistatic interactions between the genes controlling this pathway

and their impact on the selection process.

Fundamental to genetics is the relationship between the genotype of an individual, the

environment where it lives, and its resulting phenotype. This relationship is often referred

to as genotype to phenotype (GP) mapping. Since the true mechanisms of gene

expression have historically been poorly understood, geneticists have derived such

mappings from the joint distributions of genotypic and phenotypic data. The simplest

mapping, Mendelian genetics, considers traits that are completely determined by

individual genes. Many traits, however, are more complex than that; they are quantitative

in nature and are influenced by contributions from alleles at multiple loci. These multiple

gene cases have been studied using linear statistical models that allow both additive and

non-additive (dominance and epistasis) effects 3. Complex traits are also often dependent

on the environment in which a genotype is expressed. In addition to the direct effect of

the environment, genotype by environment (GxE) interactions can have important effects

on complex traits. Traditionally, genotype to phenotype mappings have predominantly

62

been linear combinations of terms representing dominance, epistasis, GxE interactions,

and genotype by genotype (GxG) interactions 4.

Even though these linear statistical relationships allowed geneticists to represent the

phenotypic variability of a large number of simple traits, working beyond the limitations

of linear mappings is one of the main challenges faced by genetics today. Interactions

between genes contribute to complex phenotypes in plants 5-8, mice 9, and

microorganisms 10,11. Genetic factors that contribute to many pathologies do not have any

direct effect on the phenotypes that are essentially determined by GxE and GxG

interactions 12,13. These observations are interpreted as non-linear effects of gene

interactions and are usually referred to collectively as epistatic effects 14.

De Jong has recently reviewed various families of models that have been used to

represent genetic networks 15. Considering the small copy number of the molecules

involved in gene expression mechanisms, Markovian models 16,17 based on a stochastic

version of the mass action law are an appealing representation of gene network dynamics.

However, the cost of computing Monte-Carlo simulations limits their use to only those

pathways having a well-documented stochastic outcome at the cellular level 18,19.

Approximating the network dynamics by a system of differential equations provides a

useful compromise between a realistic representation, speed of simulation, and a wealth

of theoretical properties and analysis techniques that can complement numerical

simulations.

Materials and methods
Modeling the galactose genetic switch: The galactose pathway is an attractive

system for dynamic modeling since it integrates a gene network, a metabolic pathway,

and a response to environmental perturbations. In a first approximation, it is possible to

associate the phenotype to the activity of the metabolic pathway and the genotype to the

genes in this pathway. Our model of the GAL system (Figure 5.1 and Table 5.1) is a

simplistic representation of the complex mechanisms of gene expression. It is

representative of the common understanding of the molecular mechanisms responsible

for the response of yeast to the presence of galactose and glucose in its environment.

63

Figure 5.1: Diagrammatic representation of the Galactose switch

Recent overviews of the GAL switch have been provided by Ideker 46 and Ostergaard 47. GalExt

and GluExt are the two environmental variables of the system. Galactose is transported into the cell

primarily by Gal2p using an ATP-dependent mechanism. It is necessary to take into consideration a

small passive diffusion of galactose into the cell to trigger the induction of the GAL genes by

galactose. Although there are a number of well-characterized metabolites between galactose and

glucose 6-phosphate, we represent the whole pathway by a single step catalyzed by a hypothetical

enzyme labeled E. Since the glucose-6-phosphatase catalyzing the transformation of Glu-6P into

glucose is not part of the GAL network, it was omitted from the model. The gene coding for Gal4p,

gal4g, can be in a repressed form gal4gX when complexed by Mig1 in the presence of glucose 48,49.

For simplicity we considered a single enzyme in the pathway coded by a single gene noted GAL. The

expression of GAL is induced by Gal4p. When in the induced state GAL-4, it expresses the E enzyme

along with the Gal3p and Gal80p transcription factors. Gal80p represses this expression by binding

to the GAL-4 complex. Gal3p is the galactose sensor of the GAL system. Galactose binds Gal3p

through an ATP-dependent mechanism. The resulting complex Gal3p* binds to the GAL-4-80

complex and induces the expression of the GAL genes50.

64

 Reaction Equation A1A1 A1A2 A2A2

D01 Gal80p → 0 30 50 70

D02 Gal4p → 0 16 36 56

D03 Gal3p → 0 22 40 58

D04 Glu → 0 50 50 50

D05 E → 0 66 82 98

R01 GalExt→ Gal 1 1 1

R02 E + GalExt → Gal + E 5 6 7

R03 E + Gal → Glu-6P + E 5 12 19

R04 Glu-6P → Glu 100 100 100

R05 GluExt → Glu 10 10 10

R06 Glu + gal4g → gal4gX 7 10 13

R07 Glu + gal4g ← gal4gX 1 2 3

R08 gal4g → gal4g + Gal4p 4 23 42

R09 GAL + Gal4p → GAL-4 3 7 11

R10 GAL + Gal4p ← GAL-4 8 9 10

R11 GAL-4 + Gal80p → GAL-4-80 2 3.5 5

R12 GAL-4 + Gal80p ← GAL-4-80 3 5 7

R13 Gal3p* + GAL-4-80 → GAL-4-80-3 6 8 10

R14 Gal3p* + GAL-4-80 ← GAL-4-80-3 1 10 19

R15 Gal + Gal3p → Gal3p* 1194 1320 1446

R16 Gal + Gal3p ← Gal3p* 700 809 918

R17 GAL-4 → GAL-4 + E 10 19 28

R18 GAL-4 → GAL-4 + Gal3p 1 2 3

R19 GAL-4 → GAL-4 + Gal80p 15 101 187

R20 GAL-4-80-3 → GAL-4-80-3 + E 330 336 342

R21 GAL-4-80-3 → GAL-4-80-3 + Gal3p 178 309 440

R22 GAL-4-80-3 → GAL-4-80-3 + Gal80p 294 338 382

Table 5.1: Chemical equations and parameters

Reactions are labeled in the first column. The chemical equation of the reaction is given in

column 2. Each parameter has two allelic values A1 and A2. The columns A1A1, A1A2, and A2A2

indicate the parameter values used when genotypes are homozygous (A1A1 and A2A2) or

heterozygous (A1A2). Parameters in bold characters indicate the genotype of the individual with the

highest performance that was generated at the 35th generation of the 34th run. Parameters

highlighted by a gray background correspond to the favorable alleles that were consistently fixed in

more than 95% of the 1,000 runs. Lines (Reactions) in italic are non-segregating in Experiment 1 and

Experiment 2 because they correspond to interactions outside of the GAL system. Parameter values

highlighted in gray were made non-segregating in Experiment 2.

65

Biology: To date, the effect of the environment has often been ignored in models of

gene networks. Alternatively, it is possible to consider the environment as a set of

external parameters, where simulation runs with various parameter values can be

compared to evaluate the impact of the environment on the model dynamics 20. For many

situations it seems that this approach is able to capture the biological logic of the

network. In the case of the galactose pathway of yeast, the environment can change the

state of the genetic switch by inducing or repressing the expression of the GAL genes.

However, the relationship between the network and its environment is not one-way. The

induction of the GAL genes by galactose results in the transformation of galactose into

glucose. This transformation introduces a feedback loop by which the induced state of the

GAL system leads to a modification of the environmental conditions that lead to this

induction. In an effort to capture this behavior, we introduced in the model GalExt and

GluExt, which can be regarded as external pools of molecules not affected by the

dynamics of intracellular reactions. Passive diffusion or active transport of these

molecules into the cell can be represented by chemical equations transforming these

molecules into their intracellular counterparts, Gal and Glu, respectively (reactions R01,

R02, and R05 in Table 5.1). Gal and Glu can be regarded as the variables indicative of

the intracellular environment. The value of the two control variables GalExt and GluExt

indicate the presence of sugars in the environment. Absence and presence were indicated

by 0 and 10, respectively. The combination of GalExt and GluExt values defines an

environment.

Dynamics: The time-evolution of the model is represented by mass-action differential

equations. The set of coupled differential equations can automatically be derived from the

chemical equations of Table 5.1 21. Specifically, the matrices of stoichiometric

coefficients for the reactants ,i r and products ,i r of the reactions can be used to

represent the generic form of a chemical equation:

 , ,
1 1

r

M M
k

r i r i i r
i i

iR X X 
 

   (4.1)

The rate of each reaction depends on the concentration of its reactants: rv

 (4.2)   ,

1

i r
M

r r i
i

v k X




 

66

The time-evolution of a molecule concentration is ruled by the balance between the

rates of the reactions producing this molecule and the ones using it as a reactant:

 

, ,
i

i r r i r r
r r

d X
v v

dt
    (4.3)

The complete set of differential equations is given in the Appendix in MATLAB

format.

Genotypes, phenotypes, and traits: In order to analyze the response of a gene

network to selective pressure, it is necessary to establish a correspondence between the

basic properties of genetics at a population level and the characteristics of genetic

networks. Our analysis relies on the following:

Segregating loci as model parameters: The reaction rates are genetically determined.

It is well established that directed mutations of promoters or protein domains can affect

the rates of protein-DNA interactions, protein-protein interactions, gene expression, or

even affect the catalytic properties of an enzyme. Hence, each parameter is determined by

a number of segregating loci. The precise mapping of the genetic space onto the

parameter space depends on the number of genes involved (N) and the extent of genetic

polymorphism. In the case of a bimolecular reaction like R09 (Table 5.1, Figure 5.1), the

rate of the binding of the Gal4p protein on the GAL promoter can be determined by the

sequence coding for Gal4p and by the regulatory sequence of GAL. Potentially, two loci

could determine the rate of this reaction but if only one of them is polymorphic, it is not

necessary to consider in the model the locus corresponding to the conserved sequence. In

the context of this paper, a single locus was associated with each parameter (i.e. N=27).

Alleles as discrete parameter values: The association between loci and parameters

makes it natural to associate allelic polymorphism with variation of specific parameter

values. Each polymorphic locus is assumed to have two alleles in this paper (larger

numbers can be considered). A null allele translates into a zero value of the

corresponding parameter. Alleles having a less dramatic effect result in parameters

having an x-fold higher or smaller value than the wild-type. The within locus parameter

values are assumed to be additive so that the heterozygous genotype is given the average

parameter value of the homozygous genotypes for the two alleles. Different levels of

dominance at the individual parameter level can be allowed but are not considered here.

67

In the context of this article, we do not consider the possibility of introducing mutations.

The genetic space is thus finite and discrete. Its 3N genotypes are the 3N parameter

combinations resulting from the selection of one of the three possible parameter values

(columns) in each of the 27 lines of Table 5.1.

Phenotypes as vectors of traits: Traditionally the phenotype of an individual is

defined by the value of the biometric data that can be measured at some point in time

(e.g. grain yield of crops, the number of bristles on a segment of Drosophila spp). These

biometric data rarely translate directly into molecular variables but they are indicative of

the performance of the individual. In order to relate a model to experimental

observations, it is necessary to derive trait values from the model itself.

Traits as functions of a model: The biometric data collected to score a trait are static,

time-independent observations. Even though life is a dynamic process that develops in

time, phenotypes are observed in standard conditions that remove time from the

observation. Even traits tightly associated with the timing of development are considered

static in genetics. The transition from vegetative growth to reproduction or flowering

time provides a good illustration of this point. The whole developmental process is

reduced to a single datum, the time of the transition to flowering. The genetic analysis of

this trait relies primarily on this single observation of individuals in a population. Traits

are a means to score the various characteristics of genotypes. In the case of the GAL

system, the most obvious trait is the capability to process galactose when it is the only

source of carbon available. How does this translate in the context of our model of the

galactose switch? There are several possible interpretations of this trait. The variable

representing the enzymes or the variables representing metabolites can be used as

indicators. In this case we elected to use Glu-6P as an indicator of the state of the

galactose pathway. In order to quantify the trait, we assigned target values for Glu-6P in

the 3 environments (we ignore the trivial case where no sugar is present Gal-Glu-).

Arbitrarily, we decided that Glu-6P should be 0 in the two environments where the

pathway should not work (Gal-Glu+, Gal+Glu+) and 2 in Gal+Glu-. The system of

differential equations was integrated between t=0 and t=104 where it is assumed to reach

steady-state. By noting the value of Glu-6P at time 104 in the Glu+Gal-

environment, this first trait is:

 410X  

68

           2 2
4 4

1 1 27, , 10 2 10 0 10 0T k k X X X      
2

4 





 (4.4)

A second trait was also defined for this model. Comparable levels of external

galactose and glucose are expected to lead to comparable levels of internal glucose. By

noting the value of Glu at time 104 in the Gal-Glu+ environment, this second

trait is:

 410Y

         2 2
4 4 4

2 1 27, , 10 2 10 2 10 2T k k Y Y Y      
2

 (4.5)

A trait value can be computed for each of the genotypes of the genetic spaced

considered in this article. So, for instance,

 is the

trait value of the genotype where all loci are A1A1 expect D02 (A1A2) and R02 (A2A2)

 1 30,36, 22,50,66,1,7,5,100,10,7,1, 4,3,8, 2,3,6,1,1194,700,10,1,15,330,178, 294T

Performance as a function of traits: A numerical performance function is computed

for selection purpose. This summarizes results from a number of elementary traits that

determine how well an individual performs in a given environment. There are multiple

ways of combining several trait values in a performance function. In the context of this

work, we considered:

     1 27 1 1 27 2 1 2, , , , . , ,k k T k k T k k    7 (4.6)

Simulation of selection: To simulate effects of selection operating on the model of

the galactose pathway, we developed a simple genetic algorithm application that was

interfaced with a gene network simulator utilizing CVODE 22. For this article we have

limited ourselves to a mass selection strategy where the phenotype of an individual is the

only criterion used to evaluate the performance of a genotype.

The initial population (500 individuals) contained equal numbers of each allele at all

segregating loci in the galactose pathway model. A constant selection pressure of 20%

was applied to all cycles of selection across all simulations. We simulated a case where

there was sustained directional selection for smaller values of the performance function

over 100 cycles of selection. One thousand replicates of the simulation were conducted.

69

Results
Model: The model of the molecular network described in this paper has two specific

features not commonly found in the literature on gene networks: (1) control variables are

used to represent the dynamic interaction of the model with the environment; (2) trait and

performance functions are defined to evaluate the performance of a model

parameterization.

Control variables: For the sake of reproducibility, the simulations described in this

paper do not take full advantage of the possible time evolution of control variables.

Instead of assigning a constant value to environmental factors such as the sugar

concentrations, it is possible to specify the variation of these concentrations in time. This

feature makes it possible to evaluate other traits of the model. For instance, it is possible

to quantify the ability of the network to react to changes of the environment. The trait

functions described in this work do not distinguish the networks that will quickly adapt to

new conditions from the ones that will need more time to turn the galactose switch ON

and OFF. In models of other regulatory networks, control variables had also been used to

represent the effect of physical parameters of the environment such as temperature,

volume, or light.

Environment Glu-6P Glu

Gal-Glu+ 0.000000 2.000000
Gal+Glu- 1.994018 3.988036

Gal+Glu+ 0.011255 2.022515

Performance = 0.025341 T1 = 0.012746 T2 = 1.988163

Table 5.2: Performance computation

In order to illustrate how performance is computed, the performance of the best performing

individual generated across the entire simulation is computed in this table. This individual was found

in the 35th generation of the 34th run of the simulation. Simulations were run in the 3 different

environments containing sugars and the value of Glu-6P and Glu at t=104 are reported in this table.

The two traits can be derived from these data by using equations (4.4) and (4.5). The performance

score is the product of the two trait values.

Performance function: In order to assess the way individuals are scored by the

performance value, we looked for the individual with the lowest performance value that

was generated across the entire experiment. This individual was found at the 35th cycle of

70

run 34. It is interesting that this individual was not found in the population generated at

the end of the selection process (cycle 100). The performance value of the best individual

is approximately 0.025 (see Table 5.2). The values achieved at the end of the selection

process are typically close to 0.20. This 8-fold difference tends to indicate that a dramatic

loss of performance occurred during the selection process. That is when it becomes

necessary to examine how these performance values are achieved, i.e. the property of the

trait and performance functions used in the simulation. The values in Table 5.2 show that

the target values for Glu-6P are reached in the three environmental conditions and T1 can

reach a very low value. This is not the case for T2. The target values for Glu are reached

in Gal-Glu+ and Gal+Glu+ conditions but we cannot get close to the target value of 2 in

the Gal+Glu- condition. When the best individual is compared to the best individuals

typically found in the last cycle of selection, it turns out that their behavior is very

comparable. Minimal changes in Glu-6P values result in a significant difference in the T1

value, which propagates to the performance value. Even more interesting is the

examination of the time-evolution of Glu-6P and Glu when the molecular network is

integrated. Asymptotic values are quickly reached in Gal-Glu+ and Gal+Glu- but the

system oscillates when placed in Gal+Glu+ conditions. The amplitudes of the oscillations

are significant (0.5 for Glu and 0.3 for Glu-6P) but the values are close to the target

values at t = 104. This shows how dependant is the outcome of the selection process on

the trait and performance functions.

Simulations: Running such an experiment is a significant computational challenge.

There are very significant differences of simulation time between runs since some

simulations can be achieved in 1.7 hours while others would take up to 4.4 hours on a

processor running at 2.8 GHz. Most of the time is spent evaluating the performance of

50,000 individuals generated during 100 populations of 500 individuals. Since the model

needs to be simulated in three different environmental conditions, the differential

equations are integrated 150,000 times in each run. In order to speed up the genetic

algorithm, previously evaluated phenotypes are recorded in a cache. Some simulations

are likely to explore larger regions of the genetic space than others. Even though the total

number of individuals evaluated is the same for all simulations, some will evaluate more

gentoypes than others, which explains the differences of simulation time. In order to

71

complete the 1,000 runs in an acceptable time (approximately 15 hours), the simulations

were distributed over the 56 nodes of a Linux cluster, each node having two processors.

The selection process simulated in this experiment is extremely basic. Its implementation

did not require much programming. In order to use the analyze the response of regulatory

networks to actual breeding programs, we also interfaced the molecular network

simulation environment with QU-GENE, an environment for simulating breeding

strategies 23,24.

Response to selection: There are two ways to analyze the network response to

selection. The time-evolution of performance is indicative of the effect of selection while

the time-evolution of allele frequencies tells us how this effect is achieved. Two

experiments (series of 1,000 simulations with identical parameters and initial conditions)

were conducted. In Experiment 1, the only non-segregating loci were those

corresponding to interactions that are often considered “outside” the Galactose switch. In

a second experiment, Experiment 2, we also fixed the favorable alleles of loci having an

additive effect in the results of Experiment 1 (see Table 5.1 for details).

Figure 5.2: Time evolution of the population average performance distribution

Data were recorded during Experiment 1 and Experiment 2, each consisting of 1,000

simulations. Histograms of the inverse of the population average performance values were computed

for each of the 100 cycles of selection and the frequency color-coded. Results from Experiment 1 (left)

show that the distribution is clearly non-normal since it exhibits at least eight modes. Beyond cycle

80, the selection process has reached its asymptotic distribution. The distribution observed in

Experiment 2 (center) is fairly similar to results of Experiment 1. The main difference is the weight

of the bottom mode (blue peak) indicating that a large fraction of the simulations never achieved

good performance values. In order to better compare these two distributions, the time evolutions of

their mean values were plotted on the third graph (right). It shows that better performance is

achieved in Experiment 2 (green line) for the early phases of the selection process. However, the long

term response to selection in Experiment 2 is not as good as in Experiment 1.

72

The response to selection of this genetic system can be illustrated by graphing the

evolution over cycles of selection of the mean performance value of the population.

However, in the case of this experiment this graph did not appear the most appropriate.

The best performers in our experiment have the lowest performance value. As a result the

selection results in a reduction of performance values over time. The other problem is

that the performance function has an absolute lower bound. So the plot of the mean

performance values over cycles of selection is difficult to read since all the runs tend to

accumulate toward 0. To overcome these difficulties, the statistical distribution of the

inverse of the mean performance value was plotted (Figure 5.2).

Experiment 1: The statistical distribution of mean performance values is initially

unimodal (Figure 5.2, left). Beyond cycle 50 or so up to eight modes can be identified.

Interestingly, there is a mode corresponding to poor levels of performance. There are also

two major modes corresponding to good performance and a few minor modes of

intermediate values. Beyond cycle 50, the selection process appears to have reached its

asymptotic distribution. However, the observation of individual trajectories indicates that

despite a constant selection pressure, the populations can move from one mode to the

other, resulting in quick gains or losses of performance even in the stationary regime.

This pattern indicates that the performance landscape is complex with multiple local

maxima and that the fluctuations of the selection process are large enough to move the

population from one peak to the next.

Allele frequencies exhibit a fairly complex behavior at most loci (Figure 5.3, top).

Fixation of one of the two alleles in more than 95% of the runs is observed for seven loci

(D02, D05, R08, R14, R18, R19, R21). In the other cases the final allele frequencies are

variable and are distributed between 0 and 1 with peaks at 0%, 50%, and 100%. Thus,

either one of the homozygotes or the heterozygote could be favored depending on the

replicate. So for most loci it is not possible to clearly identify a consistently favorable

allele; the favorable allele is highly context dependent. Also, since a small percentage of

the runs lead to retaining the heterozygous state, both alleles could be retained. Also

included in Figure 5.3 is the time-evolution of the four parameters that are not

polymorphic. They are the only ones exhibiting a random drift behavior. These loci can

73

thus be considered as negative controls. All the polymorphic loci have some selective

value in this experiment since none of them drift as the non-polymorphic ones do.

Cycle = 5

0% 50% 100%

D01
D02
D03
D04
D05
R01
R02
R03
R04
R05
R06
R07
R08
R09
R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22

Cycle = 25

0% 50% 100%

Cycle = 45

0% 50% 100%

Cycle = 65

0% 50% 100%

Cycle = 85

0% 50% 100%

Figure 5.3: Evolution of alleles frequencies under selection

During the Monte-Carlo simulations corresponding to Figure 5.2, the frequencies of allele A1 at

each of the 27 loci were recorded. Histograms of these frequencies were color-coded as in Figure 5.2.

To illustrate the effect of the selection process on the genetic makeup of the population, five

histograms corresponding to the selection cycles 5, 25, 45, 65, and 85 are displayed. In Experiment 1,

D02, D05, R08, R14, R18, R19, R21 one of the two alleles is consistently fixed in more than 95% of

the simulations. For most loci, however, no allele is fixed. Frequency distribution is multimodal with

peaks at 0%, 100% and often 50%. Non-polymorphic loci (D04, R01, R04, and R05) exhibit a pattern

indicative of genetic drift.

Experiment 2: In Experiment 2, the seven loci that had a favorable allele in

Experiment 1 were fixed and thus made non-polymorphic (see Table 5.1) By fixing the

favorable allele in the parameter file, it was anticipated that the transient phase of the

selection process would be shortened. It turns out that the initial mean performance

values are actually better (Figure 5.2, center) as anticipated. However, the asymptotic

distributions are significantly different. The heavily loaded mode at the bottom of the plot

indicates that a large fraction of the simulations never manage to achieve good levels of

performance. This is confirmed by comparing the time evolution of the mean of these

74

two distributions (Figure 5.2, left). The mean for Experiment 2 (green line) is initially

higher than the mean of Experiment 1 (blue line). Since, initially, the performance

response is slow, this results in almost a 10-cycle advantage provided by the fixation of

favorable alleles. However, there is a long-time cost to this more limited genetic

variability since the long-term response of Experiment 2 is not as good as in Experiment

1. The response of allele frequencies to selection is very similar in Experiment 1 and

Experiment 2 even though some minor quantitative difference can be observed.

Future work will relate the peaks of the performance distribution (Figure 5.3) with the

distributions of the allele frequencies. It appears that the context dependent combinations

of alleles emphasized by the results of the different replicates of the selection process

correspond to different peaks of performance on a moderately rugged landscape (data not

shown).

Discussion
Molecular networks as GP maps: GP maps have traditionally been based on

statistical models. In some cases we now have enough understanding of the molecular

mechanisms to capture their dynamics into mathematical models. There are some

indications in the recent literature that we now have models with some predictive power

of the phenotype 25-28. Analyzing the genetic properties of regulatory networks raises a

number of theoretical and technical problems, which explains the limited numbers of

articles dealing with this problem.

Non-linear GP maps: Introduction of non-linear terms in genotype to phenotype

mappings leads to considerable theoretical difficulties that prevent any closed-form

expression of the model properties. As suggested by Kempthorne 29, the development of

software to simulate genotype-environment systems (e.g. plant breeding programs) has

enabled geneticists to explore the genetic consequences of non-linear mappings in silico
24,30 without the need for an analytic result. The E(NK) framework provides a foundation

for an in silico approach to genetic analysis of the properties of linear and non-linear

gene-to-phenotype mappings at the individual and population levels 4. It is specified as a

generalization of Kauffman's NK gene network model 31, where a set of N genes are

assumed to be under the control of, on average, K other genes in the network. The E(NK)

75

framework incorporates GxE interactions through allowing a series of NK genotype to

phenotype relationships corresponding to different environment types for a given target

population of environment types. Here the target population of environments is defined

as a mixture model of different environment-types. Within this generic modeling

framework various types of genotype to phenotype mappings can be implemented 32,33.

So far we have examined a wide range of artificial gene networks, results from molecular

map based genetic mapping of traits, and a combination of genetic analysis and crop

growth models 32. In this paper, we describe a way to build a genotype to phenotype map

within the E(NK) framework that relies on our understanding of the molecular

mechanisms of gene expression.

It is interesting to relate the results presented in this paper to previous work based on

the E(NK) framework. In a broad perspective, molecular networks can be considered as

E(NK) models. In the context of this paper we have N=27 loci and E=3 environments.

Even though the loci in our model interact, quantifying the level of connections between

genes, K, proves difficult. In molecular networks, interactions between genes often

involved more than one reaction. Hence there is not straightforward way of computing K.

This limitation does not really matter since it is often used as a summary statistics in

experiments based on an ensemble approach to gene networks. Since in this paper the

network we analyze is not random, the actual topology of the network is more

meaningful than the parameter K.

Computational challenges: Simulating the evolution of a population of network

models requires solving the model with a large number of different parameterizations

(size of the population x number of generations). In order to estimate the fluctuations of

the selection process, it is necessary to repeat the simulation of the network evolution a

large number of times. Since dynamic models are orders of magnitude more expensive to

simulate than a static model of a GP map, running an experiment such as the one

described in this paper is a significant technical challenge.

Multiscale models: A major challenge in using regulatory gene networks or metabolic

pathways as genotype to phenotype mappings is that gene networks are dynamical

systems and consequently their properties are defined by reference to their time

evolution. In contrast, the common genetics view is a more static vision of the

76

relationship between the genotype of an individual and its phenotype. Time is included to

describe the evolution of populations of individuals across generations. Analysis of the

genetics of gene networks requires introducing a different time scale. By introducing a

correspondence between genetic loci and the parameter space of a gene network on the

one hand, and by defining trait functions to quantify the performance of a model

parameterization on the other hand, we reconcile a theoretical framework that assumes a

static relationship between phenotype and genotype with dynamical models of gene

expression.

An important step of this approach is to reduce the time-evolution of the gene

network into a set of static gene to phenotype relationships. So far, the performance of

gene networks has been reduced to the asymptotic level of expression of one or few

genes in one particular set of simulation conditions 34,35. In this paper we have formalized

and generalized the notion of trait and performance functions applied to models of

molecular interactions. Instead of focusing on the level of expression of specific genes,

the traits considered in this paper are derived from metabolite concentrations. These

indicators integrate the effect of all genes in the system along with the effects of

environmental parameters. This approach makes it possible to integrate the environment

in the GP maps derived from molecular networks. In other simulations, we have defined

on the same model, trait functions to quantify the ability of the model to quickly react to

environmental perturbations or to quantify the stability and robustness of a network (not

shown).

Trait and performance functions: We were surprised to find networks exhibiting

oscillations in one environment at the end of the selection process. This observation

illustrates the dependence of the selection outcome on the trait functions and performance

index. By using a naïve expression of the trait that relied on a single data point rather than

calculating a trend, the selection process lead to parameterization consistent with our

specification of the selection target but more complex than we anticipated. Similarly, we

illustrate that finding the right expression to combine several traits into a single

performance index is challenging. Again, the examination of the outcome of the selection

showed that the performance function we used in this experiment is not optimal. The

choice of trait and performance functions is partly subjective since there is not one single

77

way to quantify the properties that will be maximized by the selection process. By

comparing the outcome of simulated selection using different performance functions, it

might be possible to evaluate their relevance in the computer before using them in actual

breeding programs.

Genetics of molecular networks: Even though the model of the galactose switch

considered in this paper has not been validated by any experimental data, the results are

probably representative of the results we would get from a model derived from molecular

data. It will be necessary to apply the same approach to a number of molecular networks

models to better understand the model topology and regulation translate into genetic

properties.

Performance landscape: The multiple modes of the asymptotic distribution of the

average performance values demonstrate that the outcome of the selection process is

highly uncertain from a common starting point. In the context of plant breeding programs

where there is only a single realization of the selection process, this observation raises a

number of issues for risk management and breeding program design. From an

evolutionary perspective, it is striking that given a deterministic genotype to phenotype

mapping and a stable environment, the selection process can have a large diversity of

outcomes. It would be interesting to investigate the properties of the performance

landscape in vivo. This would require conducting a large number of selection experiments

in parallel starting from identical conditions. Conducting such an experiment requires

having first derived from a molecular network model, a GP map explaining a large

number of observed genotype to phenotype relationships. Such a map should also have

some prediction power on the unobserved regions of the genetic space. The derivation of

validated GP maps from the understanding of molecular mechanisms controlling the

expression of complex traits remains a major scientific challenge 36.

Exploration of the genetic space: Assuming that a GP map with a good prediction

power is available, then another possible application of this type of simulations is the

identification of the genotypes with outstanding levels of performance by exploring the

genetic space in silico rather than in vivo. These genotypes could then be assembled by

fixing alleles one locus at a time using genotyping techniques and marker based selection.

78

This application could be evaluated today by introducing a genetic variability in artificial

gene networks 27,37.

Molecular noise: In the context of this article, the gene network dynamics have been

represented by differential equations. It is recognized that the small copy number of some

molecules involved in the mechanisms of gene expression (e.g. transcription complexes,

genes) can result in molecular fluctuations responsible for some level of phenotypic

variability. This has been addressed theoretically 17, numerically 16,38, and experimentally
39. Using a stochastic model of the gene network dynamics might have a significant

impact on the outcome of the selection process. It is likely to smooth the performance

landscape. Having non-deterministic performance values would also reduce the

likelihood of the process from being trapped on local performance minima. By modeling

molecular interactions with mass-action equations as opposed to specialized biochemical

kinetics, it is possible to simulate the fluctuations of molecular interactions without

changing the model. In a follow-up paper we will show how molecular noise can

influence the response to selection of a molecular network. It seems likely that molecular

noise influences the expression of some complex traits in higher organisms 40,41. The

framework described in this paper makes it possible to investigate its evolutionary

consequences.

Context-dependency of genetic effects: For seven of the loci, one of the alleles was

fixed in more than 95% of the runs. These alleles can be regarded as favorable within the

context of this parameterization of the genotype to phenotype mapping of the galactose

pathway. In a first approximation, these alleles have a strong additive effect on

performance. However, for the remaining polymorphic loci, the contribution of each

allele to performance is context dependent and it is not possible to classify either of the

alleles as favorable without specifying the context. At the individual level, the context

refers to the alleles present at other loci associated to the trait. At this level, the context-

dependency of allele values results from the non-linearity of the model of molecular

interactions. Context-dependency can also be considered at the population level. The

selective values of the allele at one particular locus depends on the allele frequencies of

all other loci associated to the trait being selected.

79

Epistasis is a challenging concept with different meanings in molecular biology and

genetics. At the molecular level, all the genes of the GAL system are engaged in some

form of cis or trans interaction. Epistasis seems prevalent at this level. For geneticists,

epistasis is associated with the limits of the additive model of gene action. If the

complexity of the selection process indicates epistatic effects, it is nonetheless striking

that most genetic gain takes place during the first 50 cycles of selection in our simulation

experiment. This suggests that at the population level the system is initially in a largely

additive state, despite these molecular interactions. However, following cycle 50 the

results of the selection process are much less predictable. This indicates that the initial

cycles of selection predictably fix particular alleles at seven loci. The additive genetic

variation associated with these seven loci is exploited by selection. Following this

additive gain, the population structure is such that the system moves into a state where

there are more context-dependent, non-additive effects exploited by selection. The

consequence is the many possible selection end points by cycle 100. It may thus be

necessary to refine our understanding of the consequences of molecular interactions by,

for instance, relating genetic epistasis to the control properties of the regulatory circuits

of the gene network model 42. Further, the results we observe reinforce that views of

genetic variation based on the concepts of additive and non-additive (dominance,

epistatic) components of variance for a trait are population specific and are therefore time

dependent in relation to the cycles of selection 43. The work presented in this paper paves

the way to a more formal analysis of the genetic properties of molecular networks. In

particular, it is necessary to analyze physiological and statistical genetic effects 44,45. The

techniques to analyze genetic interactions between more than two loci raise a number of

theoretical and computational problems that are beyond the scope of this article.

It is an inspirational first step to use models of molecular interactions for gene

networks and their gene-to-phenotype mappings, such as our representation of the

galactose pathway, to consider the complex biological processes involved in the changes

brought about by plant breeding. In turn this provides a demonstration of important issues

that must be considered in the design of molecular plant breeding strategies.

80

Acknowledgements
We thank Howie Smith and two anonymous reviewers for valuable comments and

suggestions. This work would not have been possible without the support of Bob Merrill

and Roy Luedtke.

Literature cited
 1. Omholt, S.W., Plahte, E., et al. 2000. Gene regulatory networks generating the

phenomena of additivity, dominance and epistasis. Genetics 155:969-80.

 2. Frank, S.A. 1999. Population and quantitative genetics of regulatory networks. J.

Theor. Biol. 197:281-94.

 3. Falconer, D.S. and MacKay, T.F.C. 1996. Quantitative Genetics. Longman Group

Ltd., Harlow, United Kingdom.

 4. Cooper, M. and Podlich, D.W. 2002. The E(NK) model: Extending the NK model to

incorporate gene by environment interactions and epistasis for diploid genomes.

Complexity 7:31-47.

 5. Eshed, Y. and Zamir, D. 1996. Less-than-additive epistatic interactions of

quantitative trait loci in tomato. Genetics 143:1807-17.

 6. Li, Z., Pinson, S.R., et al. 1997. Epistasis for three grain yield components in rice.

Genetics 145:453-65.

 7. Li, Z.K., Luo, L.J., et al. 2001. Overdominant epistatic loci are the primary genetic

basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.

Genetics 158:1737-53.

 8. Luo, L.J., Li, Z.K., et al. 2001. Overdominant epistatic loci are the primary genetic

basis of inbreeding depression and heterosis in rice. II. Grain yield components.

Genetics 158:1755-71.

 9. Leamy, L.J., Routman, E.J., and Cheverud, J.M. 2002. An epistatic genetic basis for

fluctuating asymmetry of mandible size in mice. Evolution 56:642-53.

 10. Elena, S.F. and Lenski, R.E. 2001. Epistasis between new mutations and genetic

background and a test of genetic canalization. Evolution 55:1746-52.

 11. Steinmetz, L.M., Sinha, H., et al. 2002. Dissecting the architecture of a quantitative

trait locus in yeast. Nature 416:326-30.

81

 12. Perera, F.P. 1997. Environment and cancer: who are susceptible? Science 278:1068-

73.

 13. Weatherall, D.J. 2001. Phenotype-genotype relationships in monogenic disease:

lessons from the thalassaemias. Nat. Rev. Genet. 2:245-55.

 14. Rutherford, S.L. 2000. From genotype to phenotype: buffering mechanisms and the

storage of genetic information. Bioessays 22:1095-105.

 15. De Jong, H. 2002. Modeling and simulation of genetic regulatory systems: A

literature review. J. Comp. Bio. 9:67-103.

 16. Goss, P.J.E. and Peccoud, J. 1998. Quantitative modeling of stochastic systems in

molecular biology using stochastic Petri nets. Proc. Nat. Acad. Sci U.S.A. 95:6750-5.

 17. Peccoud, J. and Ycart, B. 1995. Markovian modelling of gene products synthesis.

Theor. Pop. Bio. 48:222-34.

 18. McAdams, H.H. and Arkin, A.P. 1999. It's a noisy business! Genetic regulation at

the nanomolar scale. Trends Gen. 15:65-9.

 19. Arkin, A.P., Ross, J., and McAdams, H.H. 1998. Stochastic kinetic analysis of

developmental pathway bifurcation in phage lambda-infected Escherichia coli cells.

Genetics 149:1633-48.

 20. Venkatesh, K.V., Bhat, P.J., et al. 1999. Quantitative model for Gal4p-mediated

expression of the galactose/melibiose regulon in Saccharomyces cerevisiae.

Biotechnol. Prog. 15:51-7.

 21. Erdi, P. and Toth, J. 1989. Mathematical models of the chemical reaction.

Manchester University Press, Manchester.

 22. Cohen, S.D. and Hindmarsh, A.C. 1996. CVODE, a stiff/nonstiff ODE solver in C.

Comp. Phys. 10:138-43.

 23. Micallef, K.P., Cooper, M., and Podlich, D.W. 2001. Using clusters of computers

for large QU-GENE simulation experiments. Bioinformatics. 17:194-5.

 24. Podlich, D.W. and Cooper, M. 1998. QU-GENE: a simulation platform for

quantitative analysis of genetic models. Bioinformatics. 14:632-53.

 25. Elowitz, M.B. and Leibler, S. 2000. A synthetic oscillatory network of

transcriptional regulators. Nature 403:335-8.

82

 26. Houchmandzadeh, B., Wieschaus, E., and Leibler, S. 2002. Establishment of

developmental precision and proportions in the early Drosophila embryo. Nature

415:798-802.

 27. Kaern, M., Blake, W.J., and Collins, J.J. 2003. The engineering of gene regulatory

networks. Annu. Rev. Biomed. Eng. 5:179-206.

 28. Hasty, J., McMillen, D., and Collins, J.J. 2002. Engineered gene circuits. Nature

420:224-30.

 29. Kempthorne, O. 1988. An overview of the field of quantitative genetics. 47-56. In

B.S. Weir, E.J. Eisen, M.M. Goodman, and G. Namkoong (ed.) Proceedings of the

second international conference on quantitative genetics. Sinauer Associates, Inc.

 30. Micallef, K.P., Cooper, M., and Podlich, D.W. 2001. Using clusters of computers

for large QU-GENE simulation experiments. Bioinformatics. 17:194-5.

 31. Kauffman, S.A. 1993. The origins of order: self-organization and selection in

evolution. Oxford University Press, New York.

 32. Cooper, M., Chapman, S.C., et al. 2002. The GP Problem: quantifying gene to

phenotype relationships. In Silico Biol. 2:151-64.

 33. Podlich, D.W. and Cooper, M. 1999. Modelling plant breeding programs as search

strategies on a complex response surface. Lect. Notes Comp. Sci. 1585:171-8.

 34. Omholt, S.W., Plahte, E., et al. 2000. Gene regulatory networks generating the

phenomena of additivity, dominance and epistasis. Genetics 155:969-80.

 35. Frank, S.A. 1999. Population and quantitative genetics of regulatory networks. J.

Theor. Biol. 197:281-94.

 36. Guet, C.C., Elowitz, M.B., et al. 2002. Combinatorial synthesis of genetic networks.

Science 296:1466-70.

 37. Hasty, J., McMillen, D., and Collins, J.J. 2002. Engineered gene circuits. Nature

420:224-30.

 38. Arkin, A., Ross, J., and McAdams, H.H. 1998. Stochastic kinetic analysis of

developmental pathway bifurcation in phage lambda-infected Escherichia coli cells.

Genetics 149:1633-48.

 39. Elowitz, M.B., Levine, A.J., et al. 2002. Stochastic gene expression in a single cell.

Science 297:1183-6.

83

 40. Kemkemer, R., Schrank, S., et al. 2002. Increased noise as an effect of

haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro.

Proc. Natl. Acad. Sci. U.S.A. 99:13783-8.

 41. Cook, D.L., Gerber, A.N., and Tapscott, S.J. 1998. Modeling stochastic gene

expression: implications for haploinsufficiency. Proc. Nat. Acad. Sci. U.S.A.

95:15641-6.

 42. Thomas, R. 1999. Deterministic chaos seen in terms of feedback circuits: analysis,

synthesis, "labyrinth chaos". Inter. J. Bifurcation and Chaos 9:1889-905.

 43. Carroll, S.P., Dingle, H., and Famula, T.R. 2003. Rapid appearance of epistasis

during adaptive divergence following colonization. Proc. R. Soc. Lond. B Biol. Sci.

270S1:S80-S83.

 44. Cheverud, J.M. and Routman, E.J. 1995. Epistasis and its contribution to genetic

variance components. Genetics 139:1455-61.

 45. Holland, J.B. 2001. Epistasis and plant breeding. Plant Breed. Re. 21:27-92.

 46. Ideker, T., Thorsson, V., et al. 2001. Integrated genomic and proteomic analyses of

a systematically perturbed metabolic network. Science 292:929-34.

 47. Ostergaard, S., Olsson, L., et al. 2000. Increasing galactose consumption by

Saccharomyces cerevisiae through metabolic engineering of the GAL gene

regulatory network. Nat. Biotechnol. 18:1283-6.

 48. Ostling, J. and Ronne, H. 1998. Negative control of the Mig1p repressor by Snf1p-

dependent phosphorylation in the absence of glucose. Eur. J. Biochem. 252:162-8.

 49. Ronne, H. 1995. Glucose repression in fungi. Trends Gen. 11:12-7.

 50. Yano, K. and Fukasawa, T. 1997. Galactose-dependent reversible interaction of

Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of

Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. U.S.A. 94:1721-6.

84

Appendix
The model of the GAL switch is given in this appendix in a format suitable for use

with the MATLAB functions for numerically integrating differential equations.

Y0 = zeros(16, 1); % initial condition
Y0(1) = 0.000000; % GalExt
Y0(2) = 0.000000; % GluExt
Y0(3) = 0.000000; % Gal
Y0(4) = 0.000000; % Glu-6P
Y0(5) = 0.000000; % Gal80p
Y0(6) = 0.000000; % Gal4p
Y0(7) = 0.000000; % Gal3p
Y0(8) = 0.000000; % GAL-4-80
Y0(9) = 0.000000; % GAL-4-80-3
Y0(10) = 0.000000; % Glu
Y0(11) = 0.000000; % gal4g
Y0(12) = 1.000000; % gal4gX
Y0(13) = 0.000000; % E
Y0(14) = 1.000000; % GAL
Y0(15) = 0.000000; % GAL-4
Y0(16) = 0.000000; % Gal3p*
KC = zeros(27, 1); % vector of kinetic
KC(1) = 50.000000; % Gal80p → 0
KC(2) = 36.000000; % Gal4p → 0
KC(3) = 40.000000; % Gal3p → 0
KC(4) = 50.000000; % Glu → 0
KC(5) = 82.000000; % E → 0
KC(6) = 1.000000; % GalExt → Gal
KC(7) = 6.000000; % E + GalExt → Gal + E
KC(8) = 12.000000; % E + Gal → Glu-6P + E
KC(9) = 100.000000; % Glu-6P → Glu
KC(10) = 10.000000; % Glu + gal4g → gal4gX
KC(11) = 1.000000; % Glu + gal4g ← gal4gX
KC(12) = 23.000000; % gal4g → gal4g + Gal4p
KC(13) = 7.000000; % GAL + Gal4p → GAL-4
KC(14) = 9.000000; % GAL + Gal4p ← GAL-4
KC(15) = 3.500000; % GAL-4 + Gal80p ↔ GAL-4-
KC(16) = 5.000000; % GAL-4 + Gal80p ← GAL-4-
KC(17) = 8.000000; % Gal3p* + GAL-4-80 → GAL-
KC(18) = 10.000000; % Gal3p* + GAL-4-80 ← GAL-
KC(19) = 101.000000; % GAL-4 → GAL-4 + Gal80p
KC(20) = 2.000000; % GAL-4 → GAL-4 + Gal3p
KC(21) = 338.000000; % GAL-4-80-3 → GAL-4-80-3
KC(22) = 309.000000; % GAL-4-80-3 → GAL-4-80-3
KC(23) = 336.000000; % GAL-4-80-3 → GAL-4-80-3
KC(24) = 19.000000; % GAL-4 → GAL-4 + E
KC(25) = 10.000000; % GluExt → Glu
KC(26) = 1320.000000; % Gal + Gal3p → Gal3p*
KC(27) = 809.000000; % Gal + Gal3p ← Gal3p*
r1 = KC(1) * Y(5); % Gal80p → 0
r2 = KC(2) * Y(6); % Gal4p → 0
r3 = KC(3) * Y(7); % Gal3p → 0
r4 = KC(4) * Y(10); % Glu → 0
r5 = KC(5) * Y(13); % E → 0
r6 = KC(6) * Y(1); % GalExt → Gal
r7 = KC(7) * Y(1) * Y(13); % E + GalExt → Gal + E

85

r8 = KC(8) * Y(3) * Y(13); % E + Gal → Glu-6P + E
r9 = KC(9) * Y(4); % Glu-6P → Glu
r10 = KC(10) * Y(10) * Y(11); % Glu + gal4g → gal4gX
r11 = KC(11) * Y(12); % Glu + gal4g ← gal4gX
r12 = KC(12) * Y(11); % gal4g → gal4g + Gal4p
r13 = KC(13) * Y(6) * Y(14); % GAL + Gal4p → GAL-4
r14 = KC(14) * Y(15); % GAL + Gal4p ← GAL-4
r15 = KC(15) * Y(5) * Y(15); % GAL-4 + Gal80p ↔ GAL-4-
r16 = KC(16) * Y(8); % GAL-4 + Gal80p ← GAL-4-
r17 = KC(17) * Y(8) * Y(16); % Gal3p* + GAL-4-80 → GAL-
r18 = KC(18) * Y(9); % Gal3p* + GAL-4-80 ← GAL-
r19 = KC(19) * Y(15); % GAL-4 → GAL-4 + Gal80p
r20 = KC(20) * Y(15); % GAL-4 → GAL-4 + Gal3p
r21 = KC(21) * Y(9); % GAL-4-80-3 → GAL-4-80-3
r22 = KC(22) * Y(9); % GAL-4-80-3 → GAL-4-80-3
r23 = KC(23) * Y(9); % GAL-4-80-3 → GAL-4-80-3
r24 = KC(24) * Y(15); % GAL-4 → GAL-4 + E
r25 = KC(25) * Y(2); % GluExt → Glu
r26 = KC(26) * Y(3) * Y(7); % Gal + Gal3p → Gal3p*
r27 = KC(27) * Y(16); % Gal + Gal3p ← Gal3p*
Y2 = zeros(16, 1); % State of the system
Y2(3) = 1 * r6 + 1 * r7 + -1 * r8 + -1 * % GalExt
Y2(4) = 1 * r8 + -1 * r9; % GluExt
Y2(5) = -1 * r1 + -1 * r15 + 1 * r16 + 1 * % Gal
Y2(6) = -1 * r2 + 1 * r12 + -1 * r13 + 1 * % Glu-6P
Y2(7) = -1 * r3 + 1 * r20 + 1 * r22 + -1 * % Gal80p
Y2(8) = 1 * r15 + -1 * r16 + -1 * r17 + 1 * % Gal4p
Y2(9) = 1 * r17 + -1 * r18; % Gal3p
Y2(10) = -1 * r4 + 1 * r9 + -1 * r10 + 1 * % GAL-4-80
Y2(11) = -1 * r10 + 1 * r11; % GAL-4-80-3
Y2(12) = 1 * r10 + -1 * r11; % Glu
Y2(13) = -1 * r5 + 1 * r23 + 1 * r24; % gal4g
Y2(14) = -1 * r13 + 1 * r14; % gal4gX
Y2(15) = 1 * r13 + -1 * r14 + -1 * r15 + 1 % E
Y2(16) = -1 * r17 + 1 * r18 + 1 * r26 + -1 % GAL

86

Chapter 6. Model parameter and topology fitting

Abstract
Motivation: Modeling of biochemical networks requires extensive knowledge of

interactions and rates. However, the required interactions and rates are often incompletely

understood. This creates an immediate need in synthetic biology for methods to fit

models to experimental observations.

Results: GenoFIT is an optimization and exploration tool aiding the development of

models of biochemical networks. Complementing the GenoDYN modeling environment,

GenoFIT provides, as an optimization tool, a means to optimize model parameters,

topology and rates, to capture the dynamics of experimental observations. As an

exploration tool, GenoFIT can produce ensembles of network models that express a

desired set of dynamics. GenoFIT uses distributed computing for improved performance

as well as a built-in scripting language for specifying evaluation functions.

Availability: Complete GPL licensed source code is available from the author.

Contact: kent.vandervelden@ieee.org

Introduction
A model of a biochemical network summarizes available knowledge of the network.

However, the model has the potential to be more useful by estimating the response to

external stimuli and other perturbations. Methods for simulating models1-4 and directly

solving their systems of equations for steady states5-7 are well known. However, these

methods require that a model, including its topology, kinetic parameters, and initial

conditions, be fully specified. The topology can be estimated using techniques, such as

gene knock-outs, to expose dependencies that define the network topology. Relative

initial conditions may be possible to estimate; however, due to basins of attraction,

models should be fairly robust to imprecise initial conditions.

Kinetic parameters are the greatest challenge in developing a fully specified model.

The easiest way to measure kinetic rates is in vitro, but such an environment, free of the

spatial constraints of a cell, can result in inaccurate kinetic rates at best8. Measurement of

87

kinetic rates in vivo is more difficult and would be uncommon to perform for all

interactions.

If experimental observations are available for the model species, an evaluation

function can be formulated that measures the model’s deviation from observations. The

evaluation function may be as simple as sum of squared error. Alternatively, if no

experimental measurements are available but if a qualitative description of the dynamics

is, an evaluation function can also be constructed. The evaluation function transforms the

process of finding parameters into an optimization or search process. Since the number of

observed species is likely to be less than the number of model parameters, the

optimization process will be under-constrained and thus many apparently equivalent sets

of parameters will exist. The model parameters located during optimization are unlikely

to be the true kinetic parameters but are still potentially useful for model prediction.

Much research has been applied to optimizing metabolic networks9-11, and model

fitting of gene regulatory networks is less refined12-14. One reason for this disparity is that

metabolic networks are composed of largely static chemical reactions while regulatory

networks are more transitory by their nature. The choice of modeling formalism also

affects the ease of model fitting. A nonlinear formalism, such as one based on tightly

coupled differential equations, will naturally be more difficult to optimize than one based

on linear approximation such as s-systems. With nonlinear models, techniques may not

exist that guarantee convergence to the global optimum.

Evolution produces complex systems from random mutations guided by selective

pressure. Computer scientists, inspired by evolution, created the field of evolutionary

computation that uses the same principles thought to be at work in evolution. Through

evolution, nature has been successful, more than engineers, in constructing systems

robust in noisy environments. It is therefore only natural to apply the concepts of

evolutionary computation to the problem of network modeling.

Evolution of network models is an extension of model fitting that increases the

degrees of freedom available. Model fitting considers alterations of the model’s

parameters alone with no impact on the model’s topology. With network model

evolution, the topology of the network is allowed to change as well as the parameters.

While similar to network reverse engineering15,16 in goal, evolutionary methods do not

88

rely on statistical inference, but instead rely upon random changes and selective

pressures. Similar approaches have been used successfully to direct the evolution of an

engineered network in vivo17.

Previous attempts to evolve networks include that of Sakamoto and Iba18 which used

a genetic programming19 approach consisting of unconstrained parse trees representing

differential equations of arbitrary mass-action reactions. This approach explores large

areas of a search space containing models without analogues to known regulation

mechanisms and ultimately may settle on such a model. Possibly key to the success of

Francois and Hakim20 was limiting the procedure to only reactions that correspond to

viable regulation mechanisms, resulting in a smaller search space. However, without

restricting the use of the building blocks, several unusual constructs were possible, such

as transcription factors consisting of more than four subunits or unusual promoter–gene

constructs. Regardless, the resulting networks are more likely to be realistic than those

found by the Sakamoto and Iba’s method. Also, neither method considered the effects of

delays between transcription and translation known to be important for circadian clock

networks21.

GenoFIT is the tool we present next that combines the ability to fit the reaction rates

of an existing model to experimental data with the ability to evolve new network

topologies. The ability to evolve networks is particularly interesting, as it may help to

develop initial models for new systems. In our discussion of GenoFIT, we will first

present the methods used by GenoFIT followed by four examples. In closing, we discuss

uses and limitations of GenoFIT and suggestions for future improvements.

Methods
GenoFIT has two modes of operation. In one mode, GenoFIT only optimizes the

parameters, while in the second mode GenoFIT may also manipulate the topology. In the

following sections we will discuss the methods for optimizing the parameters and

topology separately. Following those discussions there are some final words on common

operations that GenoFIT must perform regardless of its mode.

89

Optimization of parameters

GenoFIT searches for solutions using a genetic algorithm22 (GA) for global

optimization and a downhill simplex algorithm23 (SA) for local refinement. The

stochastic search of the GA quickly samples the parameter space, initially avoiding local

minima, but it is not well suited for fine-tuning a particular solution within a local area.

The downhill descent behavior of the SA quickly finds local minima of areas visited by

the GA, but by itself it would quickly become trapped in a local minimum. The GA and

SA complement each other, and this hybrid approach has been successfully applied

previously11.

Figure 6.1: Example network model

To understand the encoding and the operators used by GenoFIT, consider the

example shown in Figure 6.1. This model contains four reaction rates to optimize. Each

reaction rate is mapped to an optimization parameter, allowing each reaction rate to have

a unique optimization parameter (Figure 6.2) or multiple reaction rates to be associated

with a single optimization parameter (Figure 6.3). This mapping is controlled by the

GenoFIT parameter file.

Figure 6.2: 1-to-1 parameter mapping Figure 6.3: Many-to-1 parameter

mapping

The GA maintains a population of individuals where each individual actually

represents a set of model parameters. Each iteration of the GA produces a new population

based upon the previous population by using a combination of crossover and mutation

events. Crossover operates by selecting a pair of individuals, biased by their fitness

compared to the rest of the population, and produces parameters of the new individuals

by shuffling corresponding parameters of the selected individuals between crossover

90

points. Two types of crossover operators are available in GenoFIT differing in the

number of crossover points: two-point crossover (Figure 6.4), which always selects two

points, and n-point crossover (Figure 6.5), which randomly chooses each parameter. If it

is known that contiguous ranges of parameters behave as units, the two-point crossover

may have an advantage.

Figure 6.4: 2-point crossover

Figure 6.5: N-point crossover

In addition to the crossover event, random mutations (Figure 6.6) may also occur. A

mutation can occur at any parameter, adjusting it by a random amount within a

percentage, specified in the parameter file, of the original value.

Figure 6.6: Point mutation

If individuals in the new population cannot be simulated properly, e.g. due to

unrealistically stiff equations that cause the integrator called during simulation to fail,

GenoFIT can either leave this individual, likely discarding it in the next generation due to

the unlikeliness of its being selected, or immediately replace it with a new random

91

individual. To avoid losing an individual with good fit, the top individual can optionally

be ensured a place in the next generation.

Since the selection of individuals is biased by their relative fitness, ultimately the

population will converge to highly similar individuals during the later cycles of the GA.

The point where this will occur is dependent partially upon the population size as well as

selection pressure. To avoid population stagnation altogether and having individuals

trapped in local minima, the diversity of the population can be periodically examined

and, if too low, the bottom half of population can be replaced with random individuals.

During each iteration, some number of the top individuals of the population,

controllable from the parameter file, can be optimized using the SA. To avoid excess time

being spent performing local optimization, an upper limit on the number of iterations or

wall clock time can be set on the SA.

Key to any optimization is the proper specification of the evaluation function.

GenoDYN includes a rich scripting language for defining evaluation functions. All the

model parameters, except the topology, are accessible and can be modified from within

scripts. Evaluation functions can set both a fitness score of an individual and optionally

an objective score. The fitness score is a quantitative score, often some derivative of root-

mean-square deviation (RMSD) from measured values, while the objective score is more

often a qualitative score. Individuals are first sorted by the objective score and then by the

fitness score. The need for two measures is to help specify the evaluation function for

complex behavior that is hard to capture with RMSD alone. The observation driving the

use of two scores is that qualitative dynamics are harder to obtain than the quantitative

values, but after obtaining correct dynamics, the emphasis can shift to refining the values.

Models of biochemical systems can have many parameters, and with more

parameters, the search space becomes larger, and the optimization problem is likely to

become harder in general. Any reduction in the number of parameters should result in a

simpler optimization problem. Not every parameter of a biochemical system is likely to

be independent. For example, the rates of each instance of translation, transcription, and

protein degradation could be assumed to be the same, potentially allowing many

parameters to be collapsed. To facilitate the collapse of similar parameters, GenoFIT

maps a set of model parameters to a set of optimization parameters with predefined

92

ranges. It is the optimization parameters that are actually manipulated, and manipulation

of an optimization parameter has the effect of changing each associated model parameter.

Any number of model parameters is allowed to share the same optimization parameter.

Being able to specify ranges that are valid for optimization parameters helps to

simplify the parameter search space, but being able to specify the range as a function of

other parameters would be even more useful. In its current form, GenoFIT does not

directly support this within its configuration file. However, we have accomplished this in

a rudimentary way by using the fitness function scripting language to test for correctness

of the parameters and by penalizing individuals that deviate from the desired functional

relationship of the optimization parameters.

Parameter ranges:
RxnName Index into param table Rxn Equation Kinetic value
GFP 0 # GFP --> 0
TetR 1 # TetR --> 0
PL2 2 3 # (lambda cIg) + 4LacI <-> (lambda cIgX)
PL-a 4 5 # GFPg + 2(lambda cI) <-> GFPgX
PL-b 4 5 # LacIg + 2(lambda cI) <-> LacIgX
Parameters
Param Index Min Max -or-
Param Index Fixed Value
0 0.001 100
1 0.5
2 0.001 1
3 0.001 1
4 0.001 100
5 0.001 100

Figure 6.7: Example parameter specification

Many of the features of model and optimization parameters are shown in Figure 6.7,

which is a section of a GenoFIT parameter file. Eight model parameters and six

optimization parameters are specified. First, the model reactions are listed, including their

name used in the model file and an index into the optimization parameter list. Each

reaction that will be optimized, but not necessarily all reactions, must be assigned an

optimization parameter; reversible reactions must have two optimization parameters

assigned. In the example, reactions PL-a and PL-b involve the same transcription factor

and promoter, are assumed to have a similar reaction rate, and thus have the same

optimization parameters assigned. Following the list of reactions is the list optimization

parameters which are tuples of index value and either a minimum-maximum pair or a

93

single value. If a single value is used, the model parameters referencing that optimization

parameter will be assigned that fixed value for the entire optimization. If a minimum–

maximum pair present, GenoFIT is allowed to vary that parameters inclusively between

those values.

Optimization of model topology

When evolving a network topology GenoFIT can no longer code the optimization

parameters as a fixed length vector. Instead, individuals are graphs. Crossover operations

are not used because there is no direct correspondence between individuals. The number

of reactions and their order will vary. Mutation operators modify reactions rates, as

before, and also are able to introduce new network components. Mutation operators

modify reaction rates much more frequently than network components are added.

GenoFIT samples from a collection of building blocks when selecting a new

component to add. The building blocks are an abstraction of an underlying mass-action

reaction motif that is representative of a biochemical process. The collection could

simply be a reaction node and a molecule node; this would allow the greatest freedom,

but also allow many more unrealistic topologies. Instead, biologically relevant building

blocks identified by Francois and Hakim20 and shown in Figure 6.8 through Figure 6.14

are used.

These building blocks use four types of molecules: genes, proteins, gene–protein

complexes, and protein-protein complexes. GenoFIT enforces that when a building block

is added that only compatible molecule types are connected to compatible points on the

building blocks. For instance, a gene node could not attach to a protein node on a

building block.

Figure 6.8: Protein production

94

Figure 6.9: Protein production with bound promoter building block and model

Figure 6.10: Phosphorylation building block and model

Figure 6.11: Catalytic protein degradation building block and model

95

Figure 6.12: Protein complex formation building block and model

Figure 6.13: Partial complex degradation building block and model

Figure 6.14: Catalytic partial complex degradation building block and model

GenoFIT introduces modules into a network randomly without bounds. By not

explicitly removing modules during the evolution, a module that is introduced might

96

eventually be made important as the result of a subsequent change, or an unimportant

module may be rendered useless by its kinetic rates falling to zero. Regardless, the final

models are likely to contain many unnecessary components. After all iterations are

complete, GenoFIT can apply a pruning process. During the pruning process, modules

are removed from the network iteratively and the model is reevaluated. If the removal did

not severally alter the evaluation function and did not alter the objective function, then

the removal is allowed and another round of removal is applied. If the evaluation function

changes considerably or the objective score decreases then the removal is rejected and the

removal of a different module is tested. This process is repeated until no further modules

can be removed without severely affecting the evaluation and objective function severely

negatively. Although GenoFIT only makes a single pruning attempt, alternative solutions

are possible given the selection of the modules to be tested is random.

Common operations

Model fitting can be very time-consuming. To help with this, GenoFIT uses

distributed computing. A single task is designated as the supervisor task, which is

responsible for communicating with worker tasks, including distributing the model and

subsequently the individuals. During each iteration, the population is divided between the

workers that are responsible for performing the simulations, calculating fitness, and

refining optional local areas. The results are returned to the supervisor, which is

responsible for building the next generation. Simplifying management, the same binary is

used for both the workers and the supervisor.

Upon completion, GenoFIT saves a GenoDYN compatible file containing the final

model. If optimizing only the parameters, this model will be identical to the original but

with updated parameters. It is also possible to save a controllable number of top

individual in each generation. Sometimes it is interesting to examine the parameter space

trajectory that GenoFIT took to arrive at the final configuration. Model parameter sets

can be easily extracted from the network files and tabulated using tools found with

GenoDYN.

97

Results
To demonstrate GenoFIT, we will consider four examples. Each example is

optimized in triplicate. The population contains 100 individuals and the population

evolves for 100 generations. Each example uses RMSD from target measurements as the

evaluation function. The fourth example also includes an objective function.

The first two examples consider existing models where simulated results provide the

target values for the evaluation function. Each specie is measured at three time points, t =

0, t = 10, and t = 100. It is likely that the data used for optimization will be steady state or

time series measurements. To compare these two usage scenarios we compare optimizing

each network using only the last time point (steady state) and using all three time points

(time series).

The third example considers an existing model that exhibits bi-stability. This example

demonstrates how an evaluation function alone can lead to misleading results.

The fourth example evolves a toggle-switch model de novo given only evaluation and

objective functions. We examine how the top individual changes over time. Also, we

examine how pruning identifies the functional core of the model. In Appendix B this

particular example is extended and we examine how one can identify similar models

between populations and how many alternatives models may exist which are all equally

valid.

Each example considers a model which is synthetic. By considering only synthetic

examples, we are assured that a solution exists and that valid parameters are known ahead

of time, allowing evaluation of the quality of the optimized parameters with respect to the

original parameters.

Example 1

The model shown in Figure 6.15 represents gene transcription and translation with

negative feedback controlling transcription and protein degradation. This is a common

motif present in models of regulatory networks. Node A represents the inaccessible gene,

B represents the accessible gene, and C represents the protein product. Transcription and

translation is captured in the R3 reaction, degradation of C is captured in the R4 reaction,

and gene regulation is captured by the R1 and R2 reactions.

98

Figure 6.15: Model of self-regulated protein production

Time A B C
1.00 0.62 9.38 0.72
10.00 6.05 3.95 1.11
100.00 9.83 0.17 5.38
Table 6.1: Target values for evaluation function

The values used for the evaluation function are shown in Table 6.1. Figure 6.16

shows species trajectories of the original and two sets of optimized parameters using only

the last time point. While the trajectories appear quite different from the original, the last

time point matches quite well.

Figure 6.16: Original and optimized model trajectories (steady state)

As one might expect, with additional constraints of the time series data the optimized

parameters more closely match the original dynamics (Figure 6.17). By examining the

deviation of the highest ranked individual in each generation, it can be seen that GenoFIT

quickly finds a rough set of parameters and then slowly refines them (Figure 6.18).

99

Figure 6.17: Original and optimized

model trajectories (time series)

Figure 6.18: Deviation over time (time

series)

Comparing the original and the optimized parameters (Table 6.2) further exposes

differences, and quickly reaffirms that the original parameters are unlikely to be

recovered due to the under-constrained nature of the optimization process. Not only are

the same values not reconstructed, but the parameters are not even ranked in the same

order, and there is considerable variation within each parameter. The use of time series

data reduces the variation somewhat, especially among R3 and R4, which control protein

production and protein degradation, respectively.

 Steady state Time series
Parameter Target Run 000 Run 001 Run 002 Run 000 Run 001 Run 002
R1 0.100 8.588 785.58 0.003 330.734 0.282 2.078
R2 0.200 23.056 1573.5 0.005 395.550 0.407 2.629
R3 0.200 19.630 621.17 0.135 0.201 0.201 0.202
R4 0.001 0.461 19.577 0.00001 0.007 0.005 0.006
Fitness 0.063 0.001 0.015 0.560 0.240 0.497

Table 6.2: Original and optimized kinetic parameters

Example 2

Example 2 (Figure 6.19) is similar to Example 1, containing two copies of the protein

production and degradation motif. However, instead of self-regulation, in this example

each protein regulates the other. The proteins are nodes C and F, which regulate the two

genes between their active states, B and E, and their inactive states, A and D. Despite

several of the model parameters having similar purposes (e.g. protein degradation), each

model parameter was mapped to an independent optimization parameter.

100

Figure 6.19: Model of production of two proteins that regulate each other

Time A B C D E F
1.00 1.00 9.00 1.55 0.19 9.81 0.91
10.00 9.34 0.66 1.79 3.77 6.23 3.16
100.00 9.98 0.02 1.65 4.05 5.95 17.88

Table 6.3: Target values for evaluation function

As with Example 1, we sample three time points from the simulation results of the

original network to define the values for our fitness evaluation function (Table 6.3), and

then we perform steady-state and time-series experiments in triplicate. Again, we can see,

with a limited number of time points such as with the steady-state set, that GenoFIT has

considerable freedom to find solutions, demonstrated by the deviation in the trajectories

(Figure 6.20).

Figure 6.20: Original and opimized model trajectories (steady state)

The two additional time points of the time-series data set have a dramatic affect on

the deviation of the trajectories, and it is difficult to find any discrepancy between the

time course of the original and the optimization networks (Figure 6.21). The time-course

101

deviation of the best individual (Figure 6.22) shows that this example stresses GenoFIT

more than the previous example (Figure 6.18), as GenoDYN took longer to reach the

point of slower progress.

Figure 6.21: Trajectories of original and

optimized kinetic parameters (time series)

Figure 6.22: Deviation of optimized model

over time (time series)

 Steady state Time series
Parameter Target Run 000 Run 001 Run 002 Run 000 Run

001
Run 002

R1 0.100 0.00001 3838.000 0.012 0.178 0.126 0.093
R2 0.200 0.113 427.674 0.020 0.287 0.230 0.194
R3 0.200 0.124 0.028 1.354 0.197 0.199 0.197
R4 0.001 0.013 0.00001 0.00001 0.0008 0.002 0.0002
R5 0.080 53.926 390.218 9287.00 0.066 0.058 0.071
R6 0.020 13.327 101.050 2319.07 0.017 0.016 0.018
R7 0.300 0.157 0.053 6.791 0.293 0.295 0.298
R8 0.100 0.050 0.00001 2.263 0.097 0.098 0.099
Fitness 0.031 0.392 0.005 0.210 0.148 0.071

Table 6.4: Original and optimized kinetic parameters

The amount of variability in the parameters for the steady-state case is high across all

the parameters except R3, which is the production rate of one of the two proteins (Table

6.4). The additional data of the time series experiment reduces the variability and appears

to split the parameters into two classes of variability (Table 6.4). Parameters R3, R6, R7,

and R8 not only have a low amount of variability, but their values are also close to the

corresponding values of the sampled model, while R1, R2, R5, and R4 have much greater

variability. Each of the parameters corresponding to protein production, R3 and R7, has

low variability, which was also the situation with Example 1. Beyond that, there is no

clear commonality to explain the partitioning and it may simply be a coincidence.

102

Example 3

Here we consider how an evaluation function can be misleading if not properly

designed. The model shown in Figure 6.23 is a toggle switch, which can switch between

two states in response to control pulses. The nodes P1 and P2 represent the proteins of the

model and by observing the concentration of these two proteins we will see the bi-modal

behavior of this model. CV 1 and CV2 are the sources of environmental stimuli and via

Rxn 1 and Rxn 2, respectively, they create a sudden increase in concentration of P1 and

P2.

Figure 6.23: Toggle switch model

Figure 6.24: Environmental pulses

103

Pulses generated by CV 1 and CV 2 at times 1000, 2000, and 3000 (Figure 6.24) toggle

the state of the model. The proper behavior of this model is shown in Figure 6.25. Following

each pulse, the system quickly reestablishes steady state behavior.

Figure 6.25: Desired toggle switch dynamics

An evaluation function can be defined that calculates the fit of any set of model

parameters as the RSD from the observed concentrations for P1 at an assumed steady state

(Figure 6.26).

void main() {
 int i = 0;
 float time[8];
 float p1_target[8];
 float p2_target[8];
 time[0] = 950; p1_target[0] = 2.20400; p2_target[0] = 0.0632;
 time[1] = 1950; p1_target[1] = 0.04276; p2_target[1] = 1.3990;
 time[2] = 2950; p1_target[2] = 2.20400; p2_target[2] = 0.0632;
 time[3] = 3950; p1_target[3] = 0.04276; p2_target[3] = 1.3990;

 simulate();

 fitness = 0;
 for(i=0; i<4; i++) {
 fitness = fitness + sqr(p1_target[i] - result("P1", time[i]));
 }

 fitness = sqrt(fitness);
}

Figure 6.26: Toggle switch evaluation function

104

With this evaluation function, GenoFIT quickly finds parameters that appear to exhibit

bi-stability (Figure 6.27), though not identical to original dynamics (Figure 6.25). In

particular, P2 does not exhibit the desired dynamics.

Figure 6.27: Optimized toggle switch dynamics given above fitness function

While GenoFIT quickly found this solution that the evaluation function ranks high, if the

time scale is increased, allowing the model to simulate 10x longer between pulses we find

that the previously observed low plateaus of P1 are unstable (Figure 6.28). While Figure 6.27

shows P1 at two distinct concentration levels, P1 had not yet reached steady state, a criterion

that the evaluation function did not test for and that GenoFIT quickly exploited.

Figure 6.28: High fit solution simulated longer showing previously misleading steady states

105

Example 4

The last example considers a toggle switch again, but this time the topology is evolved

using a collect of building blocks. The population is seeded with models containing two

genes producing the indicator proteins (P000 and P001). Two control variables (CV1, CV2)

act as environmental stimuli switching the state of the system. Correct behavior of the

network is when P000 is in a high concentration, then P001 is in a low concentration.

Likewise, when P000 is in a low concentration, then P001 is in a high concentration. The

shift of P000 from low to high concentration is signaled by a pulse from CV1, and the shift

of P001 from low to high concentration is signaled by a pulse from CV2.

The evaluation function, a quantitative measure of fit, is calculated using RMSD between

the expected levels (10.0 in the “on” state and 0.0 in the “off” state) and the observed

concentrations (Equation 6.1). The objective function (Equation 6.2), a qualitative measure

of fit, is calculated by measuring the change in concentration between consecutive states for

both indicator proteins just before transition when steady state is most likely to have been

reached. The change in concentration is required to be greater than 1.0, and the sign indicates

the direction of the switch between “on” and “off” states. Four values are possible for the

objective function: 0: no toggle switch phenotype is observed; 1: P0 is exhibiting the toggle

switch behavior alone; 2: P1 is exhibiting the toggle switch behavior alone; 3: both P0 and P1

are correctly exhibiting the toggle switch behavior. The optimal model will have a low

evaluation score and the objective score of 3. Both functions are required because they test

seemingly incompatible aspects of the model’s behavior. Although a maximal objective score

truly represents a successful network, the function is too coarse to guide the evolution

process. The evaluation function, however, is continuous, allowing ranking and

distinguishing slight improvements; however it can be misleading, as seen in Example 3. A

low evaluation score does not necessarily mean a high objective score or vice versa. Also, an

improvement in the objective score is more important than an improvement in the evaluation

score.

106

   
   
  
  




2 2

2 2

2 2

2 2

000 0 000 10

000 0 000 10

000 10 000 0

000 10 000 0

A A

A A

B B

B B

P P

P P
EvaluationScore

P P

P P

    
 
    
 
    
 
    

Equation 6.1: The toggle-switch evaluation function.

The steady state point after each transition is represented by A, B, C, D.

1

2

1 2

000 000 1& &

000 000 1& & 1

000 000 1

Otherwise 0

001 001 1& &

001 001 1& & 2

001 001 1

Otherwise 0

A B

B C

C D

A B

B C

C D

P P

P P
F

P P

P P

P P
F

P P

ObjectiveScore F F

  
      


 
      


 

Equation 6.2: The toggle-switch objective function.

The steady state point after each transition is represented by A, B, C, D.

Figure 6.29 through Figure 6.33 show the best performing model every five generations,

along with plots of the two indicator proteins and control variables. These figures

demonstrate the evolution of the network and the emergence of the desired phenotype. The

only change to the models from GenoFIT was to organize the layout of the nodes.

107

Figure 6.29: Best of Generation 0 – Evaluation score = 61.1 – Objective score = 0.

The initial topology of all the individual networks in the population, each initialized with random kinetic

constants. No sustained response to the control variables is observed.

Figure 6.30: Best of Generation 5 – Evaluation score = 50.2 – Objective score = 0.

The topology has not changed; all improvement has been a result of mutation of the kinetic constants.

Qualitatively, no improvement has been achieved.

108

Figure 6.31: Best of Generation 10 – Evaluation score = 48.75 – Objective score = 0.

Additional modules have been added to the network and the kinetic constants continue to be mutated.

Some mutual regulation is starting to be demonstrated.

109

Figure 6.32: Best of Generation 15 – Evaluation score = 46.5 – Objective score = 3.

The switching phenotype is observed. Additional network motifs have been added and kinetic constants

mutated. The observed concentrations are not quite at the desired levels, but qualitatively this is a

significant improvement.

110

Figure 6.33: Best of Generation 20 – Evaluation score = 39.5 – Objective score = 3.

The concentrations levels continue to be improved and there is less noise at transition.

After the model has captured the required phenotype, pruning is performed in order to

remove modules which are not necessary. Figure 6.34 shows the final toggle switch model.

Figure 6.34: Final pruned toggle switch model

111

It is probable that a series of alternative networks exhibiting the desired phenotype will

be found. Each of these alternatives is a possible solution itself, but better understanding may

come from considering the collection as a whole. This is supported by the evolution

hypothesis that details of observed biological systems are not uniquely inevitable24,25.

(Alternative toggle switch solutions are considered in the appendix of this chapter.)

Discussion
The first two example models are simple, but they contain motifs present in more

complex networks, namely protein production, degradation, and gene regulation. The more

complex a model is, the more time GenoFIT will require though exact requirement is

difficult to predict. Beside the number of parameters, the smoothness of the evaluation

function and the quantity of local minima potentially have great influence on the

computational time required.

The evaluation function is key to successful use of GenoFIT. Unintended optima will

quickly be exposed if they are easier to reach than the intended optimum26. Evaluation

functions must be crafted to avoid unintended optima. One approach that can help without

making the evaluation functions overly complex is to define one evaluation function that

describes the quantitative fit to data and a second that describes the qualitative fit. Individuals

are first ranked by the qualitative fit and then within each qualitative class they are ranked by

quantitative fit. This approach works quite well, especially when seeking networks with non-

trivial qualitative behavior such as a toggle-switch.

In most cases, the evaluation function will be RMSD from experimental measurements.

These data must therefore be of high quality, contain low noise, and be sufficiently

information-rich to expose dynamics with measurements at time points that differentiate the

species behavior. For instance, multiple values sampled from a period of stability contain

may be redundant. However, if the desired behavior is a change in state in response to stimuli

or oscillation, the observations must demonstrate this behavior.

Due to the under-constrained nature of the optimization being performed by GenoFIT,

many parameter sets will have equal evaluation scores. However, they may vary in

robustness. A particular parameter set that captures the experimentally observed dynamics

112

may also allow the network to enter undesirable states exhibiting unexpected oscillatory,

chaotic, or otherwise complex behavior. If such possibilities are of concern, subsequent

analysis of candidate parameter sets by nonlinear methods may be necessary7,27.

Although constraints reduce the size of the search space, care must be taken when

constraining an evolutionary computation strategy used as a discovery method. Solutions

from unconstrained searches can be interesting due to their exploitation of search space

properties that were not obvious a priori. When forced to choose, the better choice is to

expand the search space, within reasonable limits, instead of constricting the search space

and removing viable solutions.

Future directions

The ability to map model parameters to an intermediate set of optimization parameters is

a great benefit for reducing the parameter space of the optimization problem. Being able to

specify allowed ranges for each optimization parameter further simplifies the task. However,

additional restrictions can still be envisioned; for instance, some parameters may depend

upon others. For example, it may be desirable to specify that protein degradation always be

less than production. More generically, one could specify the allowed range of an

optimization parameter to be a function of other parameters. This could be accomplished

using some functional notation in the configuration file or by specifying a function written in

the scripting language that is executed parallel to the evaluation function. A crude version of

this is possible currently by checking, within the evaluation function, that the relationships

are met and if not by assigning a low evaluation score.

GenoFIT is able to sample a regular grid of initial values to test for multiple steady states.

When used in this fashion, the fitness function compares the target value to an average of the

results across the observed steady states for each environment. This is suitable for situations

where experimental measurements are made of an entire population of cells, effectively

averaging the potentially distinctness of the individual cells. This approach exposed

limitations in the ODE solver, as some of the identified steady states are actually the result of

the ODE solver numerically failing without warning, must likely due to unmanaged floating-

point error and the stiffness of the system of equations. Restriction of optimization

113

parameters reduces the stiffness of the equations but does not entirely eliminate the problem.

Research into the area of handling multiple steady states is quite important as non-trivial

networks will contain feedback and thus be capable of exhibiting multiple steady states. The

use of only ODEs, especially starting from only a single initial state, will be misleading in

many cases. Further research, to improve performance of stochastic simulation, including

hybrid stochastic simulation28, is also necessary.

The current process of using GenoFIT requires models to be developed in GenoDYN,

saved, and then optimized using GenoFIT. In the future we plan to unify both programs. The

new program will provide an interface for manipulating models, writing objective

descriptions used to specify desired behavior, and rating models produced by the exploratory

process of topology evolution. This system is likely to support only discrete simulation

instead of ODEs. We believe that the decision to focus on discrete simulation will enable

consideration of alterative steady states and result in a more robust environment free from

floating point failures. Focusing on stochastic simulation will require extending the scripting

language to access statistical measures of the ensemble of trajectories.

Currently, GenoFIT is only available for Linux and other Unix-like systems by compiling

on each system from the available source code. A binary could be built for Windows, but

most computing clusters use Linux as their operating system, so a Windows binary has not

been pursued.

Conclusion
GenoFIT combines hybrid optimization, a scripting language, and distributed computing

to create a powerful model-fitting tool. Combining GenoFIT with GenoDYN yields a

complete modeling environment for synthetic biology. We have shown how GenoFIT is able

to fit models of various complexity, discussed pitfalls possible with evaluation functions, and

discussed future directions for improvements. The ability to evolve the topology is a unique

optimization method and potentially represents a novel way to develop constructs for

synthetic biology.

114

Literature cited
 1. de Jong, H. 2002. Modeling and simulation of genetic regulatory systems: a literature

review. J. Comput. Biol. 9:67-103.

 2. Gibson, M. and Bruck, J. 2000. Efficient exact stochastic simulation of chemical systems

with many species and many channels. J. Phys. Chem. A 104:1876-89.

 3. Mendes, P. 1997. Biochemistry by numbers: simulation of biochemical pathways with

Gepasi 3. Trends Biochem. Sci. 22:361-3.

 4. Turner, T.E., Schnell, S., and Burrage, K. 2004. Stochastic approaches for modelling in

vivo reactions. Comput. Biol. Chem. 28:165-78.

 5. Kearfoot, R.B., Markus, N., et al. 2004. Libraries, tools, and interactive systems for

verified computations four case studies. Lect. Notes Comp. Sci. 2991/2004:36-63.

 6. Kearfoot, R.B. 2008. Globsol user guide. J. Global Opt. To appear.

 7. Ermentrout, B. 2002. Simulating, analyzing, and animating dynamical systems: A guide

to Xppaut for researchers and students. Society for Industrial & Applied Mathematics,

Philadelphia, PA, U.S.A.

 8. Schnell, S. and Turner, T.E. 2004. Reaction kinetics in intracellular environments with

macromolecular crowding: simulations and rate laws. Prog. Biophys. Mol. Biol. 85:235-

60.

 9. Mendes, P. and Kell, D. 1998. Non-linear optimization of biochemical pathways:

applications to metabolic engineering and parameter estimation. Bioinformatics. 14:869-

83.

 10. Moles, C.G., Mendes, P., and Banga, J.R. 2003. Parameter estimation in biochemical

pathways: a comparison of global optimization methods. Genome Res. 13:2467-74.

 11. Yen, J., Liao, J.C., et al. 1995. A hybrid approach to modeling metabolic systems using

genetic algorithm and simplex method. Proc. 11th IEEE Conf. A. Intel. App. 277-83.

 12. Ronen, M., Rosenberg, R., et al. 2002. Assigning numbers to the arrows: parameterizing

a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci.

U.S.A. 99:10555-60.

 13. Welch, S.M., Roe, J.L., and Dong, Z.S. 2003. A genetic neural network model of

flowering time control in Arabidopsis thaliana. Agron. J. 95:71-81.

115

 14. Wong, P., Gladney, S., and Keasling, J.D. 1997. Mathematical model of the lac operon:

inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.

Biotechnol. Prog. 13:132-43.

 15. Greller, L.D. and Somogyi, R. 2002. Reverse engineers map the molecular switching

yards. Trends Biotechnol. 20:445-7.

 16. Friedman, N. 2004. Inferring cellular networks using probabilistic graphical models.

Science 303:799-805.

 17. Yokobayashi, Y., Weiss, R., and Arnold, F.H. 2002. Directed evolution of a genetic

circuit. Proc. Natl. Acad. Sci. U.S.A. 99:16587-91.

 18. Sakamoto, Erina and Iba, Hitoshi. 2001. Inferring stem of differential equations for a

gene regulatory network by using genetic programming. Proc. 2001 Congress Evol.

Comp. 720-726.

 19. Koza, J.R. 1992. Genetic programming: On the programming of computers by means of

natural selection. MIT Press, Cambridge, Massachusetts.

 20. Francois, P. and Hakim, V. 2004. Design of genetic networks with specified functions

by evolution in silico. Proc. Natl. Acad. Sci. U.S.A. 101:580-5.

 21. Millar, A.J. 1999. Tansley Review: Biological clocks in Arabidopsis thaliana. New

Phytol. 141:175-97.

 22. Goldberg, D.E. 1989. Genetic algorithms in search, optimization, and machine

learning. Addison-Wesley, Boston, MA, U.S.A.

 23. Nelder, J.A. and Mead, R. 1965. A simplex method for function minimization. Comput.

J. 7:308-13.

 24. Gould, S.J. 2000. Wonderful life: The Burgess Shale and the nature of history. W.W.

Norton, New York, NY, U.S.A.

 25. Fontana, W. and Buss, L.W. 1994. What would be conserved if "the tape were played

twice"? Proc. Natl. Acad. Sci. U.S.A. 91:757-61.

 26. Bird, J. and Layzell, P. 2002. The evolved radio and its implications for modeling the

evolution of novel sensors. Proc. of the 2002 Congress on Evolutionary Comp. 2:1836-

1841.

116

 27. Elf, J. and Ehrenberg, M. 2003. Fast evaluation of fluctuations in biochemical networks

with the linear noise approximation. Genome Res. 13:2475-84.

 28. Griffith, M., Courtney, T., et al. 2006. Dynamic partitioning for hybrid simulation of the

bistable HIV-1 transactivation network. Bioinformatics. 22:2782-9.

Appendix

Comparison of network topologies

Biochemical networks can be represented as directed graphs with nodes representing

molecules and edges representing interactions or transformations of the molecules. Instead of

building a network model from scratch, it may be possible to select one from a collection of

networks exhibiting the correct phenotype. As additional knowledge is gained, the collection

of topologies can be pruned by removing those that no longer fit the understanding of the

system. For this method to be viable, a measure of graph similarity is required to discard

topologies that are identical and possibly highly similar. Such a measure also provides insight

into the flexibility of the network topology through measure of variation. Although the

similarity could be measured considering the minimum score derived from an analysis of the

maximum common subgraphs, such a process would be very slow. Instead we developed a

heuristic that reasonably captures how one would rank the similarity of network topologies.

To build this heuristic, a comparison of six graph distance metrics derived from the

Laplacian matrix was made on an exhaustive collection of non-isomorphic graphs up to and

including size five. The graphs were generated using geng and glist composing gtools

distributed with nauty, which implements specialized graph algorithms including the

determination of isomorphism. Tables were constructed of measured distances between any

two graphs for each metric and ranked. Examination of the most similar and especially the

most dissimilar graphs was made by eye to decide if the heuristic reasonably ranked the

graphs. The best heuristic compared the top eigenvalues in common between the

unnormalized Laplacian matrices treating missing eigenvalues as zeroes.

117

Comparison of graph distance measures based on the Eigenvalues of

the Laplacian Matrices

The Laplacian matrix (6.3) is defined for undirected, unweighted non-reflexive graphs to

be the negative of the edge adjacency matrix with the vertex degrees along the diagonal. The

Laplacian matrix is symmetric, each row sums to zero, and all the eigenvalues are

nonnegative. The Laplacian matrix also has a normalized form (6.4) which considers the

degrees of the nodes. The eigenvalues of the normalized Laplacian matrix are in the range [0,

2].

Definition of Laplacian matrix, where di is the degree of vertex i:

 (6.3)  












otherwise0

 and if1

 if

, edge(i,j)ji

jid

GL
i

ji

Definition of normalized Laplacian matrix, where di is the degree of vertex i:

  










 

otherwise0

 and if

 if1
1

, edge(i,j)ji

ji

GL
jiddji (6.4)

Measure comparison

Given two graphs G1 = <N1,E1> and G2 = <N2,E2> and the associated sorted vector of

eigenvalues 1 and 2 of the Laplacian matrices for G1 and G2 respectively, we define three

distance measures.

Distance measure d1 compare only the number of eigenvalues in common between both

graphs:

  



),min(

2
,2,1

21

1



i

iid (6.5)

Distance measure d2 treats eigenvalues that are not shared between the graphs as zeroes:

  


















 








2

21

1

21

21

1),min(

2
,221

1),min(

2
,121

),min(

2
,2,12 







 


 i

i
i

i

i
i

i
iid (6.6)

118

Distance measure d3 ignores eigenvalues which are zero:

 

 

 


),min(

2
,2,1,2,1

21 0

0,0
3




i

iiiid (6.7)

The differences between these distance measures will be noticed when comparing graphs

with different numbers of nodes. All measures are symmetric, .)1,2(1)2,1(1 GGdGGd 

Comparison of un-normalized distance measures

Given the graph G, characterize the distances reported by d1, d2, and d3 for a series of

graphs G1–G9 based on an un-normalized Laplacian matrix.

Distance measure d3 is unusable since several of the graphs are misreported as being

similar. Distance measure d1 distinguishes between G1, G2, and G3 while d2 treats them

identically, likewise with G4 and G5. G6 appears the same using either d1 or d2 as desired.

Any discrepancy between the two measures should occur when comparing graphs with

different number of edges, with d2 being insensitive to differences in the number of

unconnected nodes. If the desire is to have unconnected nodes affects the distance, then d1

appears the natural choice, but it seems intuitive that d1 is comparing objects of lower

dimension in higher dimensional space, which may not be valid. All the distance measures,

unfortunately, will indicate two graphs are identical regardless of the number of nodes if

there are no edges. Neither d1 nor d2 scored G4 and G5 in desirable manner. Both only have

a single edge, but G5 at least has a closer number of nodes to G, yet it is assigned a worse

score. However, d2 scored both G4 and G5 identically instead of scoring G4 with a better

score as d1 did. The progression of graphs demonstrated by G7, G8, and G9 also demonstrate

now d1 inappropriately scores smaller graphs with smaller relative scores compared with the

larger graphs. However, d2 shows an improving score as the graph is enlarged.

119

G:

 d1 d2 d3

G1 7.1 10 0

G2 8.7 10 0

G3 10 10 0

G4

5.8 9.2 3

G5

9.2 9.2 3

G6

8.4 8.4 4.5

G7

6.7 8.4 4.5

G8

8.2 8.2 4.2

G9

8.2 8.2 4.2

Table 6.5: Comparison of un-normalized distance measures

Comparison of normalized distance measures

Given the graph G, characterize the distances reported by d1, d2, and d3 for a series of

graphs G1–G9 based on a normalized Laplacian matrix.

As mentioned previously, the eigenvalues of the normalized Laplacian matrix are in the

range [0, 2], which can be used to place an upper bound on the distance measure (n2 ,

where n is the number of eigenvalue pairs used in the calculation). The distance measures

applied to normalized Laplcian matrices follow the same trends as seen with un-normalized

Laplacian matrices. The only discrepancy is seen with d2n and d3n applied to G7, G8, and

G9. While d2(G,G7) > d2(G,G8) as desired, unfortunately d2n(G,G7) < d2n(G,G8). In this

120

particular case the distances associated with G8 are likely larger due to smaller degree

vertices and thus smaller scaling factors when compared with G7.

G:

 d1n d2n d3n

G1 1.8 2.5 0

G2 2.2 2.5 0

G3 2.5 2.5 0

G4

1.5 2.3 0.75

G5

2.3 2.3 0.75

G6

1.9 1.9 0.79

G7

1.5 1.9 0.79

G8 2.1 2.1 1.1

G9 2.1 2.1 1.1

Table 6.6: Comparison of normalized distance measures

The distance measures based on the normalized Laplacian matrix seem counterintuitive.

Given the collection of the graphs presented on the following pages, one would expect that

the graphs that G1 and G51 would be most dissimilar which is what d2 indicates (d2 = 10.0).

However d2n reports G1 and G25 are the most dissimilar (d2n = 3.0).

G1: G51: G25:

121

Conclusion of distance measure comparison

It would seem that d2 is the best distance measure presented here. The use of a

normalized Laplacian, while beneficial by setting an upper limit on the distance, does not

appear to rank graphs in an expected way.

Subtleties of the d2 distance measure

Comparison of the most similar graphs of those generated is not very interesting since

these have no edges and therefore have only zeroes for eigenvalues and thus d1 = d2 = d3 =

0. However, it is interesting for non-degenerate graphs to consider the most similar graphs. In

the table below d2 is reported for all pairs of six graphs. When trying to find most similar

graphs it may be necessary to compare in both directions for validation. For instance, if graph

A is found to be most similar to graph B in a set of graphs, it might be informative to identify

which graph is most similar to graph B.

0.00 1.05 1.23 2.16 2.07 1.10

1.05 0.00 0.88 1.18 1.16 0.75

1.23 0.88 0.00 1.41 1.42 0.77

2.16 1.18 1.41 0.00 1.18 1.61

2.07 1.16 1.42 1.18 0.00 1.15

1.10 0.75 0.76 1.61 1.15 0.00

Table 6.7: Comparison of un-normalized distance measures

122

Identification of Alternative Switch Topologies
Using the GenoFIT, a search was performed to find alternative toggle switch topologies.

Of the 220 independent runs of at most 30 generations, below are the eight successfully

evolved topologies that exhibit the toggle switch phenotype. Each of these topologies has

been pruned to be minimal (no further block can be removed without destroying the desired

phenotype):

Figure 6.35: Toggle switch model S1

Figure 6.36: Toggle switch model S2

123

Figure 6.37: Toggle switch model S3

Figure 6.38: Toggle switch model S4

Figure 6.39: Toggle switch model S5

124

Figure 6.40: Toggle switch model S6

Figure 6.41: Toggle switch model S7

Figure 6.42: Toggle switch model S8

To identify unique networks, the d2 graph similarity metric was applied to build the

following Table 6.8. Using this information, we are able to quickly identify toggle switches

S5 (Figure 6.39), S6 (Figure 6.40), and S8 (Figure 6.42) as potential duplicates. In examining

these network models we find that indeed they are duplicates and two can be discarded.

125

After performing the pruning of identical networks we are left with six unique network

topologies that exhibit the toggle switch phenotype. If one was presented with a new system

that exhibited this behavior, but they lacked sufficient knowledge of the actual topology,

these possibilities may be used to guide their experiments either confirming or contradicting

the suggestions. We have demonstrated the non-uniqueness of topology on the toggle switch

example, but this approach could be applied to any other phenotype of interest.

 S1 S2 S3 S4 S5 S6 S7 S8
S1 0 2.726 2.072 2.533 2.533 2.533 1.063 2.533
S2 2.726 0 1.345 4.432 4.432 4.432 2.372 4.432
S3 2.072 1.345 0 3.617 3.617 3.617 1.556 3.617
S4 2.533 4.432 3.617 0 0 0 2.463 0
S5 2.533 4.432 3.617 0 0 0 2.463 0
S6 2.533 4.432 3.617 0 0 0 2.463 0
S7 1.063 2.372 1.556 2.463 2.463 2.463 0 2.463

S8 2.533 4.432 3.617 0 0 0 2.463 0
Table 6.8: Similarities between toggle switch models

GenoFIT parameter file
Below the GenoFIT parameter file for the toggle switch model considered in the text.

Network file: toggle.net

Population size: 100
Must be even number if using 2pt crossover

Client-server mode: false
Must be true or false

Work-unit size: 100
The number of individuals sent to each client

#Master Address: 170.54.124.31
Master Address: 10.56.0.4
The address of the machine that is responsible for dividing up work

Maximize fitness function: false
Must be true or false

Elitism: true
Ensure best individual survives - Must be true / false

Replace failures: true
Replace any individual whose fitness could not be computed

126

with a new random individual - Must be true / false

Simplex size: 1
The number of top individuals to perform local area optimization on
using the simplex algorithm. x<=0 => disable

Time limit type: Timer
The interpretation of the time limit placed on generation - Must be None
/ Iteration / Timer
If limit type = Iteration => this is the maximum number of iterations
the simplex will make
If limit type = Timer => this is the maximum amount of time the simplex
method will take
If limit type = Timer && CS_Mode => this is the maximum amount of time
allocated to the
generation including GA specific and
Simplex

Time limit: 60
The time limit in either seconds or iterations placed on the generation.
See "Time limit type" for more details

Number of generations: -1
-1 => never end

Selection pressure: 0.2

Crossover type: NPt
Options are None, NPt, TwoPt

Shift mutation range: 0.05
Shift values by +- 5%

Save best interval: 1
Save best prefix: best
Print population interval: 0
Print population stats interval: 1

Population identity check interval: 1
Population identity limit: 0.50

Random seed: -1
-1 => generate one

Integer parameters: false
Parameter ranges:
Fields _MUST_ be separated by tabs
RxnName Index into param table Rxn Equation Kinetic value
Trans/Degrad 1::Translation 0 # Gene --> Gene + Protein
Trans/Degrad 1::Degradation 1 # Protein -->
Trans/Degrad 2::Translation 2 # Gene --> Gene + Protein
Trans/Degrad 2::Degradation 3 # Protein -->

Gene + (Trans. Factor) --> Gene:TF
Promoted Trans 1::Complex Formation 4

127

Gene:TF --> Gene + (Trans. Factor)
Promoted Trans 1::Complex Disassociation 5

Gene:TF --> Gene:TF + Protein
Promoted Trans 1::Translation 6

(Protein A) + (Protein B) --> A:B
Complex Formation 1::Complex Formation 7

Complex Formation 1::Degradation 8 # A:B -->

Rxn 1 9 # (CV 1) --> P1
Rxn 2 9 # (CV 2) --> P2

Parameters
Param Index Min Max -or-
Param Index Fixed Value
0 0.001 10 # 0.034376
1 0.001 10 # 0.238531
2 0.001 10 # 0.140899
3 0.001 10 # 0.058583
4 0.001 10 # 0.437839
5 0.001 10 # 0.492626
6 0.001 10 # 0.983715
7 0.001 10 # 0.985091
8 0.001 10 # 0.224507
9 0.3 # 0.300000

128

Chapter 7. Modeling the Guet library of networks

Abstract
In 2002 Guet et al. described the combinatorial construction of a library of synthetic

networks and characterized their behavior1. The data from this experiment attracted the

interest of several in systems biology, but little progress has been made to model these

networks. Since each network is built from a common set of transcription factors and

promoters, it should be possible to model them with a common framework. Here, we present

our attempts to model the networks of the Guet library using knowledge of each of the

components of these networks. Some of the networks can be modeled independently, a few

can be modeled sharing common motifs, and some simply defy explanation.

The discussion begins with a description of the library, including components and

construction approach. These details are necessary to build models that are presented next.

Results of stochastic optimization of kinetic constants for these models are then presented.

2. The Experiment of Guet et al.

Overview

Published network diagrams make modeling regulatory networks look deceptively

simple. In practice, most regulation mechanisms are simply not understood well enough to

accurately model an arbitrary network, a consequence of having limited observations of

complex interactions between arbitrary elements in an incompletely understood network.

Guet sought to better understand regulation by removing several of these unknowns through

construction of a library of artificial gene networks1 containing all possible topologies

between three of the best understood transcription factors. Each network was then placed in

four different environments and their response was measured. This exhaustive approach

provides several new observations, providing data for new insight into regulation and

demonstrating the diversity of phenotypes possible with just a small number of regulatory

elements.

129

Transcription factors

Each network in Guet’s library contains the three prokaryotic transcription factors: LacI2-

4, TetR, and λcI5-7. These three transcription factors are among the most extensively studied

to date, improving the chance of understanding the resulting networks.

The transcription factors were modified by the addition of an ssrA tag, a carboxy-

terminal tag that reduces protein stability by allowing certain E. coli proteases to target the

protein for early destruction8,9. For instance, the half-life of the λ repressor is reduced from

60 min. to 4 min10. This modification brings protein half-lives closer to that of mRNA,

reducing the latency of regulation, and helps to avoid toxic affects due to over-expression.

Promoters

Promoters, specific to the three transcription factors, regulate the expression of the

transcription factors. Each network is built using combinatorial fusion polymerase chain

reaction (fusion PCR) from five available promoters (the same promoter might be used

multiple times in the same network). LacI repressed two of the promoters and TetR repressed

another. The remaining two promoters were regulated by λcI, one positively and the other

negatively. A promoter also controlled expression of the reporter green fluorescent protein

(GFP)11, and that promoter was constant for all networks. These promoters were mutant

forms engineered in previous studies to enhance the effects of regulation12,13.

Controlling the expression of the three transcription factors are five promoters listed in

Table 7.1. Several of the promoters used had mutations to enhance their regulatory control.

Reporting

Through the presence or absence of IPTG (an inhibitor of LacI) and aTc (an inhibitor of

TetR) four different environments are created to observe the response of the network. The

colony is assumed to reach steady state by growing overnight. The phenotype of the network

is measured through GFP fluorescence. The particular GFP gene is a mutant variety called

gfpmut3 which has increased half-life and 20-fold greater florescence than the wild-type14,15.

Guet's name Model's names Function Specific name Reference

130

L
1P PL1 Repressed by LacI PLlacO1 12

L
2P PL2 Repressed by LacI Poid70.5 13

TP PT Repressed by TetR PLtetO1 12

λ
+P PL+ Positively regulated by λcI PRM + or3-r3 mutation

λ
-P PL- Negatively regulated by λcI PR

Table 7.1: Name and behavior of promoters

Plasmid construction

Guet’s library is constructed using a modular cloning strategy. There are five promoters

and three transcription factors that are arranged to form each of the possible 125 networks. In

addition, genetic support elements insure that each promoter affects the expression of only a

single downstream gene and that transcription stops promptly, yielding mRNA for only one

gene. To construct each of the networks by hand would be too laborious. Instead Guet

developed a clever technique to build all possible networks simultaneously through directed

combinatorial ligation of promoters and transcription factors.

In the initial constructs, a trailing ribosomal binding site (RBS) follows each of the five

promoters and leads each of the three transcription factors. In addition, a T1 termination site,

an intrinsic terminator that does not require a rho factor, follows the transcription factor. T1

has also been called an attenuator of transcription or a partial terminator which suggests that

its termination can be controlled and is not guaranteed. Rho dependent termination uses rho

to force dissociation of the RNA polymerase from the DNA once the polymerase pauses at a

termination site due to the formation of a hairpin RNA structure. Without successful

termination, a promoter may affect regulation of genes downstream from the gene associated

with the promoter (Figure 7.1). Please note in the following figures that

 L L T λ λ
i 1 2 + -P P ,P ,P ,P ,P and  jTF , ,LacI cI TetR .

RBSPi

TFj T1RBS

Figure 7.1: Promoter and transcription fragments

131

Next, portions of each of the promoter fragments, including a forward primer that

contains a Bgl I restriction enzyme site, are amplified, as is the transcription factor fragment,

including a reverse primer containing a Bgl I restriction site (figure 7.2). The specific

sequence used for the Bgl I sites depends on the associated transcription factor. This is

further explained below.

Bgl IP-TFj RBSPi

Bgl ITF-TFj

TFj T1RBS

Figure 7.2

Now, a mixture of the transcription factor construct and the five associated promoter

constructs is created and the dsDNA is denatured (Figure 7.3).

Bgl IP-TFj RBSPi
Bgl ITF-TFjTFj T1RBS

Bgl IP-TFj RBSPi

Bgl ITF-TFjTFj T1RBS

Figure 7.3

During the annealing stage, the RBS site acts as a common tag to ligate the promoter

fragment with the transcription factor fragment (Figure 7.4).

Bgl ITF-TFjTFj T1RBSBgl IP-TFj RBSPi

Bgl ITF-TFjTFj T1Bgl IP-TFj RBSPi

RBS

Figure 7.4

Ligation is followed with an amplification step to clean up the dsDNA creating a mixture

of five different promoter:transcription factor constructs with flanking restriction sites

(Figure 7.5). These steps are done for each of the three transcription factors independently,

resulting in each of the possible promoter:transcription factor gene pairings.

Bgl ITF-TFj
Bgl IP-TFj TFj T1RBSPi

Figure 7.5

Now, we must return to the specifics of the Bgl I restriction enzyme. Bgl I cleaves

dsDNA in the following way, where N represents an indiscriminate site that can be occupied

by any nucleotide (Figures 7.6 and 7.7).

132

GCCNNNNNGGC
CGGNNNNNCCG

Figure 7.6

GCCN
CGGNNNN

NNNNGGC
NCCG

Figure 7.7: After addition of Bg1 I restriction enzyme

The overhanging sections are characteristic of a restriction enzyme that leaves sticky

ends, with the sticky ends forming specific tags since Bgl I ignores these nucleotides. These

sticky ends are used in a later step to enforce a particular arrangement of the

promoter:transcription factor pairs and insertion into a plasmid. The ordering is achieved

through neighboring promoter:transcription factor constructs having complementary sticky

tags (Figure 7.8).

Figure 7.8

The final phase in the library creation ligates together the three promoter:transcription

factor pairs. A mixture of all the promoter:transcription factor pairs is created and Bgl I

restriction enzyme added producing sticky ends. The mixture contains the following

fragments in addition to several smaller fragments from the restriction enzyme (Figure 7.9).

LacI T1RBSPi
GCCNGGC

CGGNTTCNCCG
GCCN

?cI T1RBSPj
AAGNGGC

CGGNGTGNCCG

GCCN

TetR T1RBSPk
CACNGGC

CGGNTCGNCCG
GCCN

Figure 7.9

133

The dsDNA fragments ligate together in an order enforced by complementation of the

sticky ends.

LacI T1RBSPi
?cI T1RBSPj TetR T1RBSPk

GCCNGGC
CGGNTTCNCCG
GCCNAAGNGGC

CGGNGTGNCCG
GCCNCACNGGC

CGGNTCG
GCCN

NCCG
Figure 7.10

This full length strand is then ligated into an expression vector and cloned into plasmids.

The plasmids are designed to have Dra III sites (cacnnn/gtg) around the sacrificial kanR

gene. These Dra III sites are designed such that after digestion there are sticky ends

compatible with the ends of the promoter-gene constructs. The digested plasmid has the

structure -gfpmut3-T1-SC101*-bla. SC101* is the origin of replication. The bla gene

confers ampicillin resistance to the host and can be used to purify the colony. It is likely that

more than one plasmid was introduced into each cell.

λ
-P

E. coli Strains

Each network is inserted into two different E. coli strains: CMW101 and DH10B. These

strains differ by the presence of a wild-type lacI gene, with CMW101 being lacI- and DH10B

being lacI+. Both strains are tetR-. Data for two networks D038 and D052 is available for

both strains. However, only lacI- (strain CMW101) data are available for the other networks.

As one would expect, the data do demonstrate a significant difference between GFP

expression for the same network in different strains.

An assumption that the lacI- mutant did not affect the other components of the lac operon

has been made here regarding CMW101, i.e. lacZ (β-galactosidase), lacY (the permease),

and lacA (transacetylase). Since LacI is a trans-acting transcription factor, its presence on the

plasmid will also regulate of the lac operon on the host chromosome.

The CMW101 strain uses MC1061 as a base and transduction is with bactriophage P1.

Guet’s paper indicates specifically “transduction of a recA::cam marker from CLC90.” We

assume this means that a section of DNA from CLC90 is inserted into MC1061 that includes

the recA gene (the product of which is an enzyme that encourages recombination events and

is used to displace homolog sequences), a cam gene to provide chloramphenicol resistance to

select transformed cells, and a lacI mutant.

134

Environments

The transcription factors LacI and TetR can be inhibited by isopropyl β-D-

thiogalactopyranside (IPTG) and anhydrotetracycline (aTc), respectively. These inducers

bind to LacI and TetR changing the conformational state of the protein and preventing

binding to their respective promoters. By controlling the presence or absence of IPTG and

aTc, the E. coli colonies can be in four distinct environments (IPTG-/aTc-, IPTG+/aTc-,

IPTG-/aTc+, and IPTG+/aTc+ at concentrations of 1mM IPTG and 100 ng/mL aTc). Within

each environment, the network’s phenotype is determined by measuring GFP florescence.

Measurements

Two different types of analysis are performed. The florescence measurement of a colony

is performed on 30 different networks. FACS (florescence activated cell sorter) data is also

available for two networks (D038 and D052). FACS data provides a distribution of the

florescence by measuring the florescence of each cell individually instead of averaging the

measurements as is done in the other style of experiment. Unfortunately, the actual FACS

data are not available.

Topologies

Any of the five promoters may be associated with each of the three transcription factors,

with repetition, yielding 53=125 possible networks before mutations. Some of the networks

will have unconnected components, and this is allowed since the only affect is loss of control

by one or both inducers. The four environments in which each network is phenotyped and the

two different E. coli strains in which the plasmids are inserted increase the number of

possible data points to 125 x 4 x 2=1000. However, genotype and phenotype data for only 30

networks in one strain across all four environments in triplicate are available. Care must be

taken with the available data since mutants are included. The effects of mutations include

phenotypic variation for the same network topology complicating otherwise clean

experimental data.

135

The construction of these networks was not without error. The constructed plasmids were

sequenced and mutations in the regulatory elements and gene sequence were noticed. These

mutations affected the phenotype of the network.

Limitations

Guet’s library includes several networks that may exhibit multi-state or oscillatory

behavior. Most obvious is d123 which has the same structure as the repressilator, a network

constructed and observed to oscillate in vivo10, and d180, which should exhibit bi-stability16.

Unfortunately, the GFP florescence measurement method measurement used by Guet

averages the expression of the total colony and could not have detected these unless the

expression of the individuals in the colony was in sync. This results in expression data

missing the presence of interesting dynamics.

3. Modeling the Guet networks with knowledge

Overview

The experiment by Guet et al. provides new insight into how apparently simple

prokaryotic regulatory mechanisms operate when placed in different network topologies and

different environments. This exhaustive exercise may fully elucidate the behavior of an entire

class of network, by phenotyping every network. However, this approach is undesirable if

one is trying to build a gene network for a specific purpose. The traditional engineering

approach would be first to design and model the system computationally before the actual

construction. It is the modeling of these networks that is the goal of this work.

Guet’s networks were chosen instead of networks of commercial or therapeutic interest

for the same reason that components of which the networks were constructed were chosen: to

remove unknowns by starting with a well-understood system. Before tackling complex

eukaryotic systems comprised of genes of which little is known, a convincing case has to be

built supporting the efforts of modeling. To do this a system built of well-understood

elements, having lots of experimental data, and made up of a less complex prokaryotic

system is ideal.

136

Initial models of each of the thirty networks for which Guet provided expression data for

have been constructed. These models have been improved as details of mechanisms of the

transcription factors with the promoters and with the environment (IPTG and aTc) have

become better understood.

Several assumptions have been made in the models to reduce their complexity, but also to

avoid constraining them by introducing incompletely understood mechanisms. The main

assumptions are 1) the network is independent from the rest of the plasmid and the

chromosome; 2) the transcription factors and promoters are building blocks shared between

the networks, with their behavior being constant regardless of context; and 3) time delays for

transcription and translation were ignored as were effects of mutation. The models of the lac

operon3, λcI17-19, and gfp20 have been previously described.

Reactions are explicitly modeled rather than using the restricted Michaelis-Menten

enzyme rate law, which is common in the literature although questioned21. However, any

modeling formalism is likely to be inaccurate in some circumstances though. For instance,

the use of mass-action equations assumes uniform environment and accessibility, not present

in a cell where physical obstacles limit molecular mobility.

Limitations

The choice of mass-action-only equations presents a problem when the exact mechanism

is not fully understood. In such a case, if differential equations are being manipulated

directly, such modifications can be easily approximated with a new term. Using only mass-

action equations forces one to find a plausible explanation of the desired term.

Degradations are modeled as first order reactions – the greater the concentration of the

molecule or the larger the kinetic parameter the faster the degradation. This ignores the

limited supply of protease in the cell. Alternatively, degradations can rely on an explicit

limited pool of protease or approximate this by using a Michaelis-Menten reaction and the

appropriate value of kmax
20.

One possible problem with the networks presented here is that there is only a single copy

of each gene. However, in Guet’s paper there were roughly 15 copies of the plasmid per cell.

137

Example

What follows is an example of how the knowledge of the various promoters can be used

to construct a network model, in this particular case one that Guet entitled D038. Represented

as a graph (Figure 7.11), the network model is composed of edges, representing flow of

molecules indicated by the direction of the arrow, and nodes, representing molecules or

reactions. Edges can have weights, shown near the termination of the edge, indicating the

number of molecules of a particular type moving along this edge. In the Guet models the

numbers capture whether the molecule is acting alone, as a dimer, or as a tetramer. Molecules

can only be directly connected to reactions, shown in gray. Transcription/translation

reactions are labels starting with T1 through T4. The R1 and R2 reactions represent the

diffusion of IPTG and aTc across the cell membrane. The other reactions model promoters,

PTa, PTb, PL2, and PL-a, where P stands for promoter, T for TetR, L for LacI, and L- and

L+ for negative and positive promoters associated with lambda cI. The transcription factors

and GFP are shown in orange and genes are shown in red. Given that the promoters attenuate

gene transcription, there are two states for each gene, an on and an off state. The inactive

form is designated with a trailing capital gX while the active form of the gene has a trailing

g. LacI and TetR can also be in two states depending on the presence of IPTG and aTc hence

the two yellow molecules that represent the inhibited forms. Two control variables, the green

nodes, model external activators aTc and IPTG used to create the four environments.

Figure 7.11: Example of network model

138

The signals of the two control variables are seen in Figure 7.12 as are the corresponding

concentrations of each of the molecules with each transition and over time. For the D038

model to have the correct phenotype it must have a high concentration of GFP when aTc is

high and IPTG is low. In all other environments it must have a low concentration. The graph

shows that the model exhibits this behavior strongly. To emphasize the relationship between

the concentrations of the control molecules and GFP, these variables are plotted with respect

to each other in Figure 7.13.

Figure 7.12: Simulated results of network model

Figure 7.13: Simulated results of network model emphasizing GFP and environment

139

Optimization of individual Guet networks

Each of the following networks is optimized independently for twenty generations. After

optimizing each network independently, pairs of networks with solutions identified are

optimized. This increase in constraints helps to remove incorrect solutions.

The networks are constructed in two strains, lacI- and lacI+, that differ by the “presence

of a wild-type copy of the lacI gene at a chromosomal locus.” We focus on the lacI- data

since the extra copy is controlled by unknown mechanisms.

It is possible, due to the limited number of optimization iterations applied to each

network, that the GA component of GenoFIT was insignificant and that most of the

improvement came through simplex optimization. It would be interesting to perform simplex

optimization on a large number of random parameter sets and to compare the performance

with GA+Simplex or even with GA by itself. The simplex method was enabled for this runs

because it improved the rate of convergence but also because that it improved CPU

utilization when run in a distributed mode.

Tables 7.2 and 7.3 below show, for each network, the mean of the experimental

measurements as well as the values from the best network to result from the model fitting

process. Subjectively large differences between the experimental and computational results

are highlighted.

The “Feedback Present” column indicates if the network contains feedback; if so, it gives

the minimal number of steps along in the cycle. For example, D012 contains the feedback

cycle of LacI controlling LamCI which in turn controls LacI, and therefore the number of

steps is 2. Compare this with D019 in which TetR self regulates and thus the number of steps

is only 1. A network such as D016 has no feedback involved in the portion controlling GFP

and therefore all controlling signals are feed-forward.

Network
Feedback
Present Measure Env1 Env2 Env3 Env4

D012 Y(2) Mean 9799.553 135.4443 384.7536 207.8155
 Opt 9797.253 270.4756 270.5110 270.4756
D016 N1 Mean 28855.19 1058.356 769.8561 633.8722
 Opt 14812.52 846.114 14812.5213 846.1142
D018 Y(2) Mean 5746.876 4954.329 6977.721 6682.387

1 Feedback is present but on a disconnected section that should have no influence on GFP

140

 Opt 6090.328 6090.328 6090.328 6090.328
D019 Y(1) Mean 331.4371 529.6587 10787.62 168.6702
 Opt 343.2553 343.2553 10787.62 343.2553
D028 Y(2) Mean 571.3948 658.9516 284.0915 255.054
 Opt 615.1732 615.1732 269.5727 269.573
D032 Y(2) Mean 48101.94 1047.139 48895.48 737.5005
 Opt 48498.71 892.320 48498.71 892.3197
D038 Y(1) Mean 427.4511 550.8609 13733.83 235.2039
 Opt 427.4706 393.0426 13733.83 393.0426
D052 Y(1) Mean 13557.13 467.7863 435.0814 686.2104
 Opt 7012.46 7012.4552 434.6700 686.3325
D066 Y(3) Mean 7853.719 1621.622 410.1682 435.9176
 Opt 4737.332 4737.332 419.3673 428.6299
D078 Y(3) Mean 102.9218 146.2082 48589.24 407.9522
 Opt 124.5649 124.5650 48589.24 407.9522
D090 Y(2) Mean 203.558 162.6739 92.84085 125.2698
 Opt 148.199 143.9718 148.19943 143.9718
D101 N2 Mean 38861.47 591.6231 4654.478 885.175
 Opt 11248.19 11248.1892 11248.189 11245.659
D104 Y(1) Mean 215.8781 210.1672 234.766 343.5589
 Opt 251.0925 251.0925 251.093 251.0925
D113 Y(2) Mean 35163.88 1836.717 38297.85 1125.72
 Opt 36730.98 1481.107 36730.98 1481.11
D114 Y(2) Mean 218.8726 276.0236 446.396 416.1289
 Opt 339.3553 339.3553 339.355 339.3553
D117 Y(2) Mean 45398.87 46253.63 51533.72 52351.76
 Opt 48884.32 48884.50 48884.50 48884.50
D123 Y(3) Mean 653.3381 866.5852 402.461 282.9939
 Opt 653.5507 866.5706 342.659 342.6601
D133 Y(2) Mean 43474.82 44461.52 47795.19 53051.28
 Opt 47195.70 47195.70 47195.70 47195.70
D135 Y(1) Mean 6088.122 5654.586 5820.305 5765.542
 Opt 5832.139 5832.139 5832.139 5832.139
D143 Y(1) Mean 14218.99 14124.03 568.3894 451.3978
 Opt 14171.51 14171.51 509.8936 509.8936
D180 Y(2) Mean 47496.43 48890.79 791.2396 885.5921
 Opt 48090.86 48829.78 1021.5488 1043.0039
D250 Y(1) Mean 795.7318 296.989 354.3591 182.9879
 Opt 575.0454 239.988 575.0454 239.9884
D253 Y(1) Mean 885.4587 799.1516 325.6498 204.3227
 Opt 553.6457 553.6457 553.6457 553.6457
C024 Y(1) Mean 13922.28 439.0846 538.8381 345.9892
 Opt 7229.77 391.9829 7229.7711 391.7693
C101 Y(3) Mean 176.7035 9121.306 297.036 226.886
 Opt 233.5376 9121.306 233.538 233.550

2 Feedback is present but on a disconnected section that should have no influence on GFP

141

C103 Y(3) Mean 11305.01 2440.715 818.0481 653.8954
 Opt 6872.86 6872.862 735.9717 735.9717
C113 Y(3) Mean 13454.04 1798.284 447.3287 530.8328
 Opt 7626.22 7626.219 489.1356 489.1523
C144 Y(1) Mean 31623.44 4857.925 534.1963 656.0131
 Opt 18240.68 18240.678 534.1875 656.0676
C195 Y(2) Mean 46271.42 18231.93 68665.37 56802.93
 Opt 45019.03 37746.30 57351.96 37746.30
C242 Y(1) Mean 17403.9 715.8412 567.6562 442.334
 Opt 9059.9 9059.8707 504.9951 504.995

Table 7.2

Network
Feedback
Present Measure Env1 Env2 Env3 Env4

D012 Y(2) Mean 9800 135 385 208
 Opt 9797 270 271 270
 Error -0.02% 99.70% -29.69% 30.15%
D016 N(2) Mean 28855 1058 770 634
 Opt 14813 846 14813 846
 Error -48.67% -20.05% 1824.06% 33.48%
D018 Y(2) Mean 5747 4954 6978 6682
 Opt 6090 6090 6090 6090
 Error 5.98% 22.93% -12.72% -8.86%
D019 Y(1) Mean 331 530 10788 169
 Opt 343 343 10788 343
 Error 3.57% -35.19% 0.00% 103.51%
D028 Y(2) Mean 571 659 284 255
 Opt 615 615 270 270
 Error 7.66% -6.64% -5.11% 5.69%
D032 Y(2) Mean 48102 1047 48895 738
 Opt 48499 892 48499 892
 Error 0.82% -14.78% -0.81% 20.99%
D038 Y(1) Mean 427 551 13734 235
 Opt 427 393 13734 393
 Error 0.00% -28.65% 0.00% 67.11%
D052 Y(1) Mean 13557 468 435 686
 Opt 7012 7012 435 686
 Error -48.27% 1399.07% -0.09% 0.02%
D066 Y(3) Mean 7854 1622 410 436
 Opt 4737 4737 419 429
 Error -39.68% 192.14% 2.24% -1.67%
D078 Y(3) Mean 103 146 48589 408
 Opt 125 125 48589 408
 Error 21.03% -14.80% 0.00% 0.00%

142

D090 Y(2) Mean 204 163 93 125
 Opt 148 144 148 144
 Error -27.20% -11.50% 59.63% 14.93%
D101 N(2) Mean 38861 592 4654 885
 Opt 11248 11248 11248 11246
 Error -71.06% 1801.24% 141.66% 1170.44%
D104 Y(1) Mean 216 210 235 344
 Opt 251 251 251 251
 Error 16.31% 19.47% 6.95% -26.91%
D113 Y(2) Mean 35164 1837 38298 1126
 Opt 36731 1481 36731 1481
 Error 4.46% -19.36% -4.09% 31.57%
D114 Y(2) Mean 219 276 446 416
 Opt 339 339 339 339
 Error 55.05% 22.94% -23.98% -18.45%
D117 Y(2) Mean 45399 46254 51534 52352
 Opt 48884 48885 48885 48885
 Error 7.68% 5.69% -5.14% -6.62%
D123 Y(3) Mean 653 867 402 283
 Opt 654 867 343 343
 Error 0.03% 0.00% -14.86% 21.08%
D133 Y(2) Mean 43475 44462 47795 53051
 Opt 47196 47196 47196 47196
 Error 8.56% 6.15% -1.25% -11.04%
D135 Y(1) Mean 6088 5655 5820 5766
 Opt 5832 5832 5832 5832
 Error -4.20% 3.14% 0.20% 1.16%
D143 Y(1) Mean 14219 14124 568 451
 Opt 14172 14172 510 510
 Error -0.33% 0.34% -10.29% 12.96%
D180 Y(2) Mean 47496 48891 791 886
 Opt 48091 48830 1022 1043
 Error 1.25% -0.12% 29.11% 17.77%
D250 Y(1) Mean 796 297 354 183
 Opt 575 240 575 240
 Error -27.73% -19.19% 62.28% 31.15%
D253 Y(1) Mean 885 799 326 204
 Opt 554 554 554 554
 Error -37.47% -30.72% 70.01% 170.97%
C024 Y(1) Mean 13922 439 539 346
 Opt 7230 392 7230 392
 Error -48.07% -10.73% 1241.73% 13.23%
C101 Y(3) Mean 177 9121 297 227
 Opt 234 9121 234 234
 Error 32.16% 0.00% -21.38% 2.94%

143

C103 Y(3) Mean 11305 2441 818 654
 Opt 6873 6873 736 736
 Error -39.21% 181.59% -10.03% 12.55%
C113 Y(3) Mean 13454 1798 447 531
 Opt 7626 7626 489 489
 Error -43.32% 324.08% 9.35% -7.85%
C144 Y(1) Mean 31623 4858 534 656
 Opt 18241 18241 534 656
 Error -42.32% 275.48% 0.00% 0.01%
C195 Y(2) Mean 46271 18232 68665 56803
 Opt 45019 37746 57352 37746
 Error -2.71% 107.03% -16.48% -33.55%
C242 Y(1) Mean 17404 716 568 442
 Opt 9060 9060 505 505
 Error -47.94% 1165.63% -11.04% 14.17%

Table 7.3

Figure 7.14: Reconciliation of three of Guet's networks into a single model

Figure 7.14 shows a model composed of three independent networks based on shared

parameters and regulation motifs. Despite its complexity, one can see the main features. Each

box represents either a reaction (grey boxes) or a molecule (colored boxes). Lines represent

the flow of molecules with the arrowheads indicating the direction of flow. Molecules

required by a reaction flow into the reaction box and the reaction product flows out. The

144

structure of this network helps to identify regulation motifs that have appear as vertical

structures of molecules and reactions. The labels help to identify the individual networks by

the prefix (e.g. c101, d143, d019) and the label suffixes identify the network component.

Like suffixes (ignoring the lowercase ‘a’ and ‘b’ that are required only to give each entity a

unique name) within and between networks identify reactions or molecules with similar

constraints, i.e. the building blocks.

Conclusions
Models of thirty networks from Guet’s library have been created in the modeling

environment and fitted to the experimental data provided by Guet. While most models do not

fit well in all environments, at least three of those that could be fitted individually could also

be reconciled into a single model supporting the possibility of model independence of

regulation mechanisms. Reviewing the literature surrounding the specific promoters,

transcription factors, and protocols surrounding the original experiment helped to identify

inaccuracies in the modeling of certain regulatory mechanisms that could be responsible for

some of the failures. This work should be revisited from a synthetic view, i.e. disregarding

the experimental data initially and trying to fit generated data to the models, much like what

will be done in the characterization phase. This removes the possibility that the model is

wrong but still allows testing whether regulation motifs can be modeled independently.

Guet used a combinatorial approach to build artificial networks by treating transcription

factors and promoters as building blocks in a similar way as this research tests if network

models can be built using regulation motifs as building blocks. Although the identical

components may be shared between the various networks in Guet’s library, it does not

immediately mean that they behave identically regardless of their context.

The final goal of a single unifying framework is still elusive but hopefully this work

represents an additional step forward.

Literature cited
 1. Guet, C.C., Elowitz, M.B., et al. 2002. Combinatorial synthesis of genetic networks.

Science 296:1466-70.

145

 2. Muller-Hill, B. 1996. The lac operon: A short history of a genetic paradigm. Walter de

Gruyter & Co. Koln, Germany.

 3. Vilar, J.M., Guet, C.C., and Leibler, S. 2003. Modeling network dynamics: the lac

operon, a case study. J. Cell Biol. 161:471-6.

 4. Wong, P., Gladney, S., and Keasling, J.D. 1997. Mathematical model of the lac operon:

inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose.

Biotechnol. Prog. 13:132-43.

 5. Ptashne, M. 1992. Genetic switch: Phage lambda and higher organisms. Blackwell

Science Inc.

 6. Ptashne, M. 2004. Genetic switch: phage lambda revisited. Cold Spring Harbor Press,

Cold Spring Harbor, N.Y.

 7. Ptashne, M. and Gann, A. 2001. Genes & signals. Cold Spring Harbor Press, Cold Spring

Harbor, N.Y.

 8. Gottesman, S., Roche, E., et al. 1998. The ClpXP and ClpAP proteases degrade proteins

with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev.

12:1338-47.

 9. Herman, C., Thevenet, D., et al. 1998. Degradation of carboxy-terminal-tagged

cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12:1348-

55.

 10. Elowitz, M.B. and Leibler, S. 2000. A synthetic oscillatory network of transcriptional

regulators. Nature 403:335-8.

 11. Chalfie, M., Tu, Y., et al. 1994. Green fluorescent protein as a marker for gene

expression. Science 263:802-5.

 12. Lutz, R. and Bujard, H. 1997. Independent and tight regulation of transcriptional units in

Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements.

Nucleic Acids Res. 25:1203-10.

 13. Muller, J., Oehler, S., and Muller-Hill, B. 1996. Repression of lac promoter as a

function of distance, phase and quality of an auxiliary lac operator. J. Mol. Biol. 257:21-

9.

146

 14. Cormack, B.P., Valdivia, R.H., and Falkow, S. 1996. FACS-optimized mutants of the

green fluorescent protein (GFP). Gene 173:33-8.

 15. Andersen, J.B., Sternberg, C., et al. 1998. New unstable variants of green fluorescent

protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol.

64:2240-6.

 16. Gardner, T.S., Cantor, C.R., and Collins, J.J. 2000. Construction of a genetic toggle

switch in Escherichia coli. Nature 403:339-42.

 17. Ackers, G.K., Johnson, A.D., and Shea, M.A. 1982. Quantitative model for gene

regulation by lambda phage repressor. Proc. Natl. Acad. Sci. U.S.A. 79:1129-33.

 18. Hasty, J., McMillen, D., et al. 2001. Computational studies of gene regulatory networks:

in numero molecular biology. Nat. Rev. Genet. 2:268-79.

 19. Thieffry, D. and Thomas, R. 1995. Dynamical behavior of biological regulatory

networks--II. Immunity control in bacteriophage lambda. Bull. Math. Biol. 57:277-97.

 20. Leveau, J.H. and Lindow, S.E. 2001. Predictive and interpretive simulation of green

fluorescent protein expression in reporter bacteria. J. Bacteriol. 183:6752-62.

 21. Hill, C.M., Waight, R.D., and Bardsley, W.G. 1977. Does any enzyme follow the

Michaelis-Menten equation? Mol. Cell Biochem. 15:173-8.

Appendix
Introduction: There may be a number of explanations why it was not possible to model

the dynamics of all of the Guet constructs. Here we will consider possibilities not requiring

validation of the biological experimental data.

The method employed in this chapter to measure dynamics of the network models is

simulation, which relies on numerical integration of ODEs formulated from the model. How

the ODEs are constructed and how they may be used to perform the simulation are topics

covered in earlier chapters. This method of simulation is very fast and thus is most often

employed by modelers. However, there are two major deficiencies with this method:

numerical stability and solution completeness.

Numerical integration is implemented using floating point arithmetic. If the integrator is

not carefully implemented, it will be prone to the compounding influence of seemingly small

147

numerical error. While the integrator used in our experiments, CVODE, has a long and

respected history, even high quality integrators can be susceptible to error accumulation. This

problem is most pronounce when system variables have widely different magnitudes, a

situation that occurs during simulation of a model containing low copy-number genes and

high concentration proteins. Numerical integration is a complex subject of applied

mathematics and thus the best we can do is try to avoid problematic situations.

When simulating models based on ODEs with a numerical integrator, the final solution is

dependent on the initial values of the parameters, i.e. the initial concentrations. Viewing a

model as a function in multidimensional space, there are ranges of values for the parameters

that will result in the same solution, known as basins of attraction. The simplest models will

only have a single solution regardless of the initial conditions. However, many models,

including many of the models of the Guet library, have feedback allowing multimodal

behavior. Nonlinear dependencies between parameters complicate the identification of

separate basins of attraction.

Feedback is common in regulatory network models due to properties such as self and

mutual regulation. The feedbacks allow the ODEs to potentially have multiple steady states.

However, numerical integration, given a single set of initial conditions, will only identify one

steady state. When optimizing the parameters of a model, reporting only a single solution

may be misleading. Ideally, we need to identify all solutions and compare experimental

observations to each of these solutions even when there is only a single experimental

observation. However, to do this the observations must be made supporting this approach.

The Guet networks clearly have the ability to exhibit multimodal behavior given that

several have topologies that are similar to toggle-switch and repressor like networks.

However, the experimental observations used in this chapter were collected from a

population of cells and averaged over a period of time. Any variation in florescence between

cells or over time is lost by the averaging. Even with each measurement being made in

triplicate, since they were made over a population any variation, due to multimodal behavior

is lost. If the data would have been collected on a cell-by-cell, perhaps it would be possible to

observe the multi-modal behavior. The population of two networks were examined using a

148

cell sorter and a distribution of florescence was observed. The distribution did not show

multimodal behavior, but at least one these networks not present difficulty in modeling.

There is a need to develop methods that can find all steady state solutions of network

models, but there is a competing need that the solutions be found quickly. Slow generation of

solutions during modeling building is a nuisance, but slow solution generation will quickly

make parameter optimization impractical. Stochastic or hybrid optimization methods are

most often employed, and these methods will test tens of thousands of parameter sets (at

least). The solution sets of each model must therefore be found very quickly.

Methods: In Chapter 4 we introduced a method that samples the parameter space of a

model during optimization to identify multiple steady states. This method could miss some

solutions if the sampling is not sufficiently fine and can be time consuming. Our

implementation makes this method impractical for use during optimization. However, there

are alternatives. Here we describe some methods that we have tried and our impressions. The

rough idea, with each method is to, within our modeling environment, extract the system of

equations from the models, manipulate them to be suitable for a particular method, and then

call on an external package to find the actual solution.

The equations in the systems of ODEs used throughout this dissertation have consisted of

polynomials of second degree. Each term in the polynomial consists of at least one variable.

Many of these equations, but not all, can be solved by Mathematica directly. For example,

take network S1, a toggle switch, considered in Chapter 6 (Figure 7.15). This network is

designed to have bimodal behavior but this is completely hidden by simulation. Finding the

steady state solution of this model using Mathematica requires exporting the ODEs and

finding where all the ODEs, derivatives of species concentrations, are zero (Figure 7.16),

which by definition is a steady state.

Complicating solving the ODEs for steady state solutions is the fact that the equations are

not entirely independent. This happens due to mass conservation of certain species. For

example, a gene network will conserve abundance of genes. While the protein concentration

is free to change, gene copy number is normally not. However, genes may change between

various states, such as inhibited and uninhibited, but the total count does not change. To

149

express this, mass conservation terms are necessary. These are shown in Figure 7.16 as

bolded terms.

Figure 7.15: Toggle switch model S1

k1 = 0.106696;
k2 = 0.15061;
k3 = 0.328247;
k4 = 0.0666803;
k5 = 0.939691;
k6 = 0.862253;
k7 = 0.968658;
k8 = 0.655576;
k9 = 0.0256774;
k10 = 0.369641;
k11 = 0.983843;
k12 = 0.416003;
pa = -k5*a*A+k6*cp1;
pA = -k2*A-k5*a*A-k8*A*B+k1*a+k6*cp1+k7*cp1;
pb = -k10*b*B+k11*cp2;
pB = -k4*B-k8*A*B-k10*b*B+k3*b+k11*cp2+k12*cp2;
pcp1 = -k6*cp1+k5*a*A;
pC = -k9*C+k8*A*B;
pcp2 = -k11*cp2+k10*b*B;
Chop[TableForm[NSolve[{a+cp1==1, b+cp2==1, pa == 0, pA == 0, pb == 0, pB
== 0, pcp1 == 0, pC == 0, pcp2 == 0},
{a, A, b, B, cp1, C, cp2}]]]

Figure 7.16: Mathematica code to solve S1

Mathematica is able to quickly locate the steady states (Figure 7.17), but not all of them

are realistic. Solutions involving negative or imaginary terms have no physical interpretation

and must be discarded. This example shows how a simple network, which would only exhibit

a single steady state through simulation from many initial conditions, has three steady states:

150

two corresponding to the bimodal states of the toggle-switch and one corresponding to an

unstable steady state separating the two stable ones. Mathematica has located all solutions.

{a = -1.69872, A = -1.45776, b = -23.3759, B = -2.77548, cp1 = 2.69872, C =
103.299, cp2 = 24.3759},
{a = 1.05387, A = -0.0469053, b = 5.63688, B = -2.18944, cp1 = -0.0538716,
C = 2.62196, cp2 = -4.63688},
{a = 0.238771, A = 2.92539, b = 0.940617, B = 0.168032, cp1 = 0.761229, C =
12.5501, cp2 = 0.0593825},
{a = 0.775587, A = 0.265502, b = 0.640395, B = 1.4946, cp1 = 0.224413, C =
10.1313, cp2 = 0.359605},
{a = 0.923089, A = 0.0764527, b = 0.452397, B = 3.22174, cp1 = 0.0769107, C
= 6.28863, cp2 = 0.547603}

Figure 7.17: Mathematica solutions to S1

To implement a tight connection to Mathematica, it is necessary to identify the mass

conservation relationships. This may be possible through analysis of the network model.

However, an alterative is to require the modeler to specify the type of each specie and then

apply specie type specific rules to construct the mass conservation rules.

When performing stochastic optimizations the optimization time can be greatly reduced

by using a cluster of machines. However, using Mathematica as the solver would require a

license for each machine, which may be prohibitively expensive. Given the commercial

licensing of Mathematica one may want to consider alternatives.

Internally, Mathematica is likely using Groebner basis. Another tool, Reduce, is

considered by many to contain the most sophisticated algorithms for Groebner basis and

solving systems of equations. While not as fast as Mathematica, source code is available for

Reduce allowing tighter integration, and its license is much more flexible.

The methods discussed so far find multiple solutions but they do little to help with the

possibility of numerical error. Mathematica, specializing in symbolic manipulation, may be

less prone to floating point error, but the model constants are expressed as floating point

values and this may trigger Mathematica to use numerical methods. Expressing the constants

as rational numbers may help.

An alternative is to use interval arithmetic methods. Unlike floating point arithmetic,

which can only represent a finite number of infinitesimal points, interval methods operate

using intervals of values. This allows floating point error to be explicitly captured as an

expansion of the interval. Functions may also be implemented using interval methods. A

Newton method implemented using interval methods has the amazing property of being able

151

to find all solutions to a system of equations along with error bounds on the solutions

affectively solving both problems inherent with simulation.

GLOBSOL is a well known interval analysis package that implements a Newton method.

The same requirements are placed on the modeling environment when exporting a system of

equations to GLOBSOL as with Mathematica. GLOBSOL is a slower than Mathematica in

some cases, but still has good performance. GLOBSOL has the least restrictive license of the

packages considered here and is available freely, including source code, from its author who

continues to develop it. Interval methods are slower than point methods because, at the very

least, the interval has to be tested at both extremes of each interval instead of only a single

point. However, this is a simple view of interval arithmetic and many additional operations

are necessary to maintain tight intervals and correctness throughout the calculations.

Finally, stochastic simulation can also help avoid problems with the traditional

simulation. Traditional simulation uses a numerical integrator and thus is susceptible to

numerical error and is deterministic. The determinism guarantees that the same steady state

will be located for a given set of initial conditions, regardless of the number of possible

steady states. Floating point error is not a problem with stochastic simulation because each

specie has an integer concentration. This also provides a more physically realistic

interpretation to the concentration results and greatly simplifies implementation. In fact,

implementation of the Gillespie method can be done in perhaps 100 lines of code and

requires no advanced mathematics. Multiple steady states are exposed during stochastic

simulation because even though the simulation begins from a point of initial concentrations,

there is always some probability of the system transition to another state, even in steady state.

With the benefits of stochastic simulation there are disadvantages. Stochastic simulations

require ensembles of trajectories, perhaps tens of thousands, to be constructed. Each

trajectory is independent of each other so parallel hardware can help, but it is still time

consuming. Also, because stochastic simulation is still a simulation, there is still some

dependence on initial conditions. It is conceivable that certain steady states may be difficult

to reach from some initial conditions. Without knowledge of the number of steady states, it

becomes difficult to know if sufficient simulation has been performed. Also, interpretation of

the simulation results is not so clear. Given a transition may occur anytime, it is unclear when

152

steady state has been reached. It is also unclear how to go about identifying the steady states

from the distributions of trajectory ensembles.

Conclusions: If modeling of biochemical networks, such as regulatory networks, is to

become a viable part of synthetic biology, foundational methods must be developed that

allow the dynamics of networks to be fully observed in the presence of multiple steady states.

In addition, methods must be unsusceptible or highly resistant to numerical error. To allow

optimization, these methods must be fast. Parameter optimization places a large demand on

any method. However, allowing the topology to also be altered during optimization increases

the degrees of freedom and the demands grow considerably. We have examined a few

methods that are available now and hope that others will identify and develop other methods

to replace traditional simulation.

153

Chapter 8. General conclusions

Overview
The benefits of modeling are well recognized throughout engineering. Most systems

constructed by people today are simply too complex to fully understand in all situations. The

disciplines of systems biology, genetic engineering, and synthetic biology have been

influenced by the engineering approach, and as such, as they mature these fields will also

benefit from modeling. However, biological systems may prove to be more complicated and

so there is an urgent need for advancement of methods for modeling biological systems.

This dissertation chronicles one group's attempt to apply modeling methods to improve

their understanding of genotype to phenotype mapping as well as to identify new constructs

for synthetic biology. When we began, there was little existing work to leverage, so we

started at foundational levels: characterizing a formalism, developing a modeling

environment and optimization methods, and applying these methods to several independent

problems.

Accomplishments
Throughout this dissertation, we have advanced a framework for modeling biochemical

constructs with the goal of aiding synthetic biology. Starting with a mathematical formalism

of mass-action reactions and showing its application to networks of DNA and proteins, we

built the GenoDYN modeling environment. Our modeling environment differs from others

by relying on hierarchical modeling to compose existing constructs into more complicated

and sophisticated ones. This makes GenoDYN extensible in general and practical for models

with considerable replication, such as explicit modeling of individual cells in a population.

The extensibility is demonstrated by deriving a new modeling tool that focuses on Petri

networks instead of mass-action reactions.

Model fitting is particularly important. It is the main method of finding parameters to

make the model consistent with observations. We designed a method of searching a model's

parameter space by recursive partitioning. While impractical for large models, this method

was published and is important for evaluating subsequent techniques.

154

To demonstrate the applicability of this work to genotype-to-phenotype maps and

breeding programs, we subjected a population containing our model of the yeast galactose

switch to selective pressure. The results of this paper concluded that genes are context

dependent and so it is impossible to select the best allele for a particular gene independent of

interacting genes. This has strong implications to a mature breeding program that has likely

lost alleles that may be optimal in different contexts.

More recent exploratory results appear in the last chapters. Using networks constructed

and characterized by Guet et al., we attempt to reconcile a dataset of network topologies and

experimental measurements into a collection of network models sharing common motifs.

Many of the networks are successfully modeled, but not all of them. Given the

inconsistencies observed in the experimental results, the constructs that could not be modeled

may have sequencing errors or the impact of multiple equilibria may not be fully appreciated.

Given the difficulty of modeling the Guet networks, we introduce an additional method

that increases the degrees of freedom during model fitting. Now the topology is allowed to

change in addition to the model parameters. Effectively, we evolve a network model given a

description of the desired phenotype. With the increase in degrees of freedom also comes an

increase in the computational requirement satisfied by clusters of computers. The unique

models produced by this system are interesting to study for alternative solutions. For

networks without models, the evolved networks can provide inspiration for new models.

Future directions
The next step in the continuation of this research, which may be quickest to obtain, is

solving the problems of multiple equilibria. Continuous simulation is used throughout this

dissertation because of its performance, however its limitations require one to be careful not

to be misled. Relying on continuous simulation will, at best, result in an incomplete

understanding of the dynamics of the model. In particular, continuous simulation is

dependent on initial conditions and will only identify one of possibly many equilibria. This is

particularly troublesome when trying to fit a model since only one steady state is examined,

potentially the incorrect one.

155

Possible alternatives to continuous simulation include directly solving the system of

equations, stochastic simulation, and interval analysis based Newton methods. However,

these methods are not entirely equivalent. It is difficult to know when enough stochastic

simulation has been performed, and as a simulation it is still biased by initial conditions.

Directly solving the equations and interval methods are the most thorough methods and may

be the best candidates for replacing continuous simulation. While these methods may not

yield trajectories, in most situations trajectories are uninteresting because the initial

conditions do not realistically represent any particular state of an individual cell.

After enumerating multiple equilibria, the next area requiring research is optimization

and model fitting. Stochastic optimization, such as genetic algorithms, is typically used when

little is known about the problem. However, the quality of the outcome of stochastic

optimization is not guaranteed. Again, interval methods may help. Beyond treating the model

fitter as a black-box, perhaps structure in the problem will allow improvements in the

optimization methods.

The Guet et al. dataset is an impressive piece of work and deserves a more thorough

characterization. Reproducing these constructs, characterizing each construct, and releasing

the data to the public would be a huge contribution to synthetic biology and to those

developing modeling methods. It is important that the constructs be characterized in such a

way to measure if multiple equilibria are present. It is unclear why Guet did not perform

these measurements originally. Perhaps it was due to expense at the time or because he did

not know how influential the dataset would become. Key datasets such as an improved Guet-

like dataset will be vital for developing and benchmarking new methods and can be done

independently of the previous suggestions for future work.

Final thoughts
Modeling of the actual cellular processes for engineering purposes is a relatively new

activity. It is impossible not to acknowledge the impact that engineering, based on the

physical sciences, has had on the modern world. If ethically approached, engineering based

on the life sciences may ultimately have a larger beneficial impact.

156

Appendix A. PPN: A Petri Net simulation tool

Preface
Chapter 3 of this dissertation describes a modeling environment that is instrumental in

the development of the subsequent chapters. Originally called PNE, for Pioneer Network

Editor, reflecting the sponsorship of Pioneer Hi-Bred during its development, and later

renamed as GenoDYN to complement a coauthor’s existing tool, GenoCAD, this package

is actually more than a single tool, but is a framework, allowing entirely new modeling

environments to be created. In this appendix we describe one such extension, PPN, for

modeling Petri nets. Much of the graphical framework is reused, but the simulation

engine is completely new. The description of the simulation engine may also help those

with similar interests, since such implementation details are rare.

Introduction
Petri nets1 have been used to model systems in a wide range of fields including

dependability, communication, music2, and biology3,4. The broad acceptance of Petri nets

likely has a lot to do with the understandable discrete nature of Petri nets and their

amenability to accommodate application in new fields. Here we present a new Petri net

modeling environment that is meant to be generic. While the field of Petri net modeling

environments is a crowded one, we believe that our application has novel features

including hierarchical structures of complex models. Our system is made more generic by

being able to simulate models that contain any number of both deterministic and

stochastic transitions.

Methods
In this section we describe several of the key features of PPN and the implementation

of these features. To ensure maximum performance, PPN is implemented in C++. To

increase portability to other operating systems, including Microsoft Windows, Linux, and

Mac OS/X, the Trolltech’s Qt widget set underlies the GUI. Where possible, operating

system specific functions, such as thread management and network communication, have

been implemented using Qt to increase portability.

157

Modeling environment

PPN presents a canvas on which networks may be drawn using a combination of

nodes and edges (Figure A.1). The PPN canvas appears similar to other visual Petri net

modeling tools, but there are differences in how networks are presented. Places and

transitions are rectangles instead of the traditional circles, the names are contained within

the places and transitions, and places display their token count below their name.

Figure A.1: PPN screenshot

Perhaps unique to PPN is the ability to model networks hierarchically using

subnetworks. A subnetwork is a network motif that is encapsulated and referenced by a

higher level network. Places that are exported from the subnetwork are exposed to the

higher level network where they can be tied to other places. Subnetworks offer a

convenient way to compartmentalize a repetitive motif of a network. By abstracting the

motif, it becomes possible to simplify the appearance of the design and reuse components

158

in other networks. A new instance of a subnetwork is created when it is copied, and

modification of the copy only affects the copy.

Hybrid simulation algorithm

Both places and transitions have single values associated with them. The value

associated with a place represents the number of tokens present in the place. While the

value associated with transitions represent the expected waiting time. Transitions come in

two flavors in PPN, deterministic and stochastic. With deterministic transitions, the value

can be considered a time delay. Once a transition is ready, because all the required tokens

are available, the transition will delay by the specified waiting time. Stochastic transitions

are similar, although the actual time delay is sampled from an exponential distribution

centered about the waiting time. Below are the main algorithm steps.

Step 1: Initialize a state vector, state. The state vector contains, for each place, the current

number of tokens present. The required initialization simply requires copying the

token values from each place present in the model.

Step 2: Initialize results matrix, results, that contains a copy of the state for each sampled

time point. The sampling rate could be different from the actual transition rate,

but to best observe the dynamics of a model, the sample rate should be twice that

of the fastest transition.

Step 3: Initialize deadline vector, deadline. For each transition there is an associated time

at which the transition may actually occur. The initialize is performed by filling

the vector with the values of t0 plus the transition specific delay.

Step 4: While t ≤ tend perform the following steps:

Step a: For each of the transitions trans, check to see if deadlinetrans < t. If so, add

trans to a list of ready transitions, ready.

Step b: Randomize ready, which is necessary for deterministic models with race

conditions. Without this step, transitions that are regularly ready at the

same time would always fire in the same order.

159

Step c: For each of the trans  ready, check to see if trans can still occur by

checking if the required tokens are available and inhibitory tokens are not

present. If so, update state based on the movement of tokens. To update

state, decrement the source places by the number of tokens taken and

increment the destination places with the number of tokens generated.

Step d: Update deadline with times relative to t when transitions that can occur

should be attempted.

Step e: Examine deadline and find the time the next transition will occur, tnext. Set

t = tnext. If no transition is scheduled to occur then set t = tend. This step

allows the simulation to jump to the next time point of interest without

examining intermediate times where no events occur.

Step f: As needed, based on the sampling rate and t, update results matrix by

copying results from the state vector into the results vector.

Generation of results

When simulating strictly deterministic Petri nets, the results will be the same with

each simulation. However, if there is any non-determinism present in the model, such as

with race conditions or if the model has stochastic transitions, the results may change

with each simulation. In such a case, each simulation represents only a single trajectory

that the system could take and is of little independent value. However, combine several

trajectories and the breadth of the system dynamics is exposed.

Presentation of results

The graphs produced by PPN visualize the ensemble of trajectories, but there are

currently no metrics for summarizing the results. However, results can be exported for

analysis in statistical packages.

The graphs are generated using a modified version of the Qwt graphing package for

Qt. The main differences include the addition of a novel histogram representation and

context menus for controlling common activities for each graph.

160

If a simulation results in only a single trajectory, the graph will be familiar line plots

representing the token count of each place during the simulation. However, if a

simulation generates an ensemble of trajectories, then a 3D histogram is presented. In the

histogram, time and token count are still represented along the horizontal and vertical

axes respectively. However, there are also vertical bins for each time point, with each bin

assigned a color depending on its relative count. Cooler blue colors represent low values

and warmer red colors represent high values. The mean is superimposed as a line plot.

By viewing the histogram plot of a large number of simulations, it becomes possible

to find if a model exhibits rare and unexpected multi-model behavior. For instance,

perhaps a system fails only rarely. The difference between the correctly functioning state

and the failure state will appear as an additional mode. The time when this mode appears,

and its relative frequency, provides clues as to the expected frequency of the failure.

Discussion
In this section we present several examples of Petri nets that have been modeled in

PPN and discuss their dynamics. The goal of these examples is to act as a demonstration

of Petri nets as well as PPN.

Example: Communication protocol

In this example we consider a Petri net of a communication protocol (Figure A.2).

This particular protocol is modeled as having send and receive queues and two channels

for communication. Messages are only sent on the first link, while the second link is

reserved for sending acknowledgments. All transitions are deterministic with fixed time

delays. The simulation results show the expected decrease of tokens in the sendQueue

and the corresponding increase of tokens in the rcvQueue place. Steady state occurs at t =

60 (Figure A.3).

161

Figure A.2: Communication protocol

Figure A.3: Simulation of comm. protocol

To continue the exploration of the dynamics of this system, PPN can color-code the

places with their relative token counts to show the patterns in the flow of tokens. Shown

below are three time points that have been selected to show the initial state (Figure A.4),

an intermediate state (Figure A.5), and the steady-state configuration (Figure A.6).

Figure A.4: State at t=0

Figure A.5: State at t =

23.7

Figure A.6: State at t =

63.9

Example: Stochastic vs. deterministic

To examine the differences between stochastic and deterministic transitions, consider

Figure A.7, which is a model that contains two identical networks, with the top network

consisting of deterministic transitions and the bottom network consisting of stochastic

transitions. All tokens start in the two N1 places and flow to the N1 and N2 places. Also,

the transition rate of T1 is five-fold faster than T5.

Steady state occurs at approximately t = 12 (Figure A.8) with N5 containing roughly

1/5 the number of tokens as N1. This is expected considering the difference in transition

rate. However, the graph of the stochastic network differs from the deterministic network.

In fact, with each simulation the stochastic network results will differ (compare Figure

A.8 to Figure A.9). It is therefore important to perform several simulations and generate

ensembles (Figure A.10). On average, this model will reach steady state with eight tokens

in N1 and two tokens in N5, although there are rare contradictory trajectories.

162

Figure A.7: Stochastic and

deterministic models of same

network

Figure A.8: Stochastic and deterministic simulation

of the same network

Figure A.9: Second simulation showing

how stochastic results differ each time

Figure A.10: Histogram representation of

trajectory ensembles

Example: Identification of deadlock and race conditions

Simulations of Petri nets can also identify unexpected, potentially dangerous,

behavior. Consider the Petri net in Figure A.11, which passes tokens from N1 to N2, then

stochastically transfers the token to either N3 or N4. Once tokens are present in both N3

and N4, a pair of tokens from each place is combined and recycled back to N1. This may

be similar to a process in a factory. The network appears benign, but the ensemble of

thousands of simulations shows an unexpected steady state around t = 1500 (Figure

A.12).

Examining one of the trajectories exposes the root cause of this bi-model distribution.

Starting from the initial conditions (Figure A.13), at an intermediate point the tokens are

split between places N3 and N4 (Figure A.14), but eventually, at steady state, all the

163

tokens have become lodged in N4 (Figure A.15). In a different trajectory, the tokens may

have become lodged in N3. This network demonstrates the detection of race conditions,

here present at N2, and deadlock, the network has a steady state where none should exist.

Figure A.11: Example model with

deadlock possible

Figure A.12: Simulation results showing

that a deadlock is possible in N3 or N4

Figure A.13: State at t

= 0

Figure A.14: State at t

= 3.0

Figure A.15: State at t

= 4.8

Example: Reliability impact of serial modules

In this example we consider how Petri nets can be used to model reliability using a

network of modules in series. In subsequent examples, we will examine how the

reliability changes when the modules are in parallel.

First, let’s define a subnetwork (Figure A.16) to contain the network in Figure A.17.

This subnetwork allows tokens to transition deterministically in a single time step if the

node is active. However, the node can stochastically fail, after which no tokens can

transition.

164

Figure A.16: Subnetwork module for

serial networks

Figure A.17: Internals of subnetwork

module

We can use this subnetwork to compose a series of networks containing one, two, and

three modules (Figure A.18). Given tokens recycle from the destination to the source

places in these networks, failures can be detected by identifying steady states when the

destination place is drained of tokens. With one module steady state occurs at

approximately 100 time units, with two modules this happens at approximately 40 time

units, and with three modules total system failure occurs at approximately 20 time units

(Figure A.19). While these results do not exactly reflect the expected times, they are

reasonable, and with additional trajectories the simulation results should asymptotically

reach the expected times.

Figure A.18: Three networks with an

increasing number of modules in series

Figure A.19: Simulation results showing

how reliability decreases with increase in

modules

165

Example: Reliability impact of parallel modules

Using a similar subnetwork as with the serial example, the next networks consider the

impact of parallel modules on reliability. In the first example, we have only one module

(Figure A.20), and failure occurs at t = 70 (Figure A.21), but the second example (Figure

A.22) has five modules in parallel increasing the time before total system failure to t = 90

(Figure A.23), as expected.

Figure A.20: Network with modules in

parallel (only one module active)

Figure A.21: Simulation results of

network of parallel modules (only one module

active)

Figure A.22: Network with modules in

parallel (five modules active)

Figure A.23: Simulation results of

network of parallel modules (five modules

active)

166

Example: Reliability impact of modules with failover

The previous example (Figure A.22) has all parallel modules active from the start.

Using Petri nets we can test how the reliability of the system changes if only a single

module is active at any point. Failure of an active module triggers rollover to the next

module. By adding an extra signal from the subnetwork to trigger a power-on event in the

subnetwork (Figure A.24 and Figure A.25), a parallel network with failover capability

can be created (Figure A.26). Simulation of this network shows that failure does not

occur until t = 170 (Figure A.27), which is significantly better than t = 90 when all

modules were active from the start in the previous example. This configuration is clearly

superior from the perspective of reliability if one can tolerate system downtime to

rollover. One could relate this to real-world modules with limited usefulness while

powered-on.

Figure A.24: Subnetwork module for

parallel networks

Figure A.25: Internals of subnetwork

module

Figure A.25: Network of parallel modules

with failover

Figure A.26: Simulation results of parallel

modules with failover

167

Fut

roperty of a place or a transition one must access a

 is inconvenient when many changes must be

ma le where any property of a model could be

of parameters to be saved and recalled.

sults is useful for gaining an appreciation

of the overall behavior of the system; however, there is currently no way to statistically

ilarly, there is currently no way to know when sufficient

s,

ACM Comp. Sur. 9:223-52.

y, G.A. 2003. Petri Net representations in

systems biology. Biochem. Soc. Trans. 31:1513-5.

oud, J. 1998. Quantitative modeling of stochastic systems in

l. Acad. Sci. U.S.A. 95:6750-

ure improvements

Currently, to make a change to any p

property dialog of that particular node. This

de. We would like to create a single tab

changed. This change will also allow sets

The graphical presentation of the simulation re

summarize these results. Sim

simulation has been performed. By adding some statistical measures of the simulation result

both of these deficits may be addressed.

Conclusions
We have developed a new Petri net modeling package, PPN, capable of modeling hybrid

deterministic and stochastic systems. We have demonstrated PPN using examples modeling

systems, estimating reliability, and testing for unexpected behavior. PPN can be used as a

modeling tool or a teaching aid.

Literature cited
 1. Peterson, J.L. 1977. Petri nets.

 2. Barate, A. 2008. Music description and processing: an approach based on Petri Nets and

XML. 525-34. In V.Kordic (ed.) Petri Net: Theory and Applications. I-Tech Education

and Publishing, Vienna, Austria.

 3. Pinney, J.W., Westhead, D.R., and McConke

 4. Goss, P.J. and Pecc

molecular biology by using stochastic Petri nets. Proc. Nat

5.

168

(This page was intentionally left blank for proper layout of Appendix B.)

169

Appendix B. Additional examples

hat follows is a summary of modeling and optimization experiments for each

network in the Guet library. In the network model diagrams, an X over a section of the

network model highlights a disconnected section that should not have any influence. The

following simulation parameters were present in all the reports and have been factored

out for brevity.

Simulation:
 Simulation Method: ODE (0)
 Time Interval: [0,100]
 Sampl
 Absol
 Relative Tolerance: 0.0001
 Max ODE Step Size: 1
 Min ODE Step Size: 0
 Single Trajectory: false
 Number of Replicates: 20
 Histogram Update Rate: -1
 Current Environment: 1 (of 4 total)
 Current Fitness Function: Null (0)

W

ing Rate: 0.1
ute Tolerance: 1e-008

170

The networks in the Guet collection respond to stimuli from two external chemical

signals. Given the h ent, they can

be considered as Boolean signals. Setting a threshold for the florescence of GFP allows

the

igh concentrations of these chemical signals when pres

response of each network, its phenotype, to be interrupted as a Boolean function.

Table B.1 is a summarization of the Guet constructions, their phenotypes, and how they

relate to Boolean functions of two inputs. Some Boolean functions have no analogue in

the network library.

(,) #f x y
Class

x y x y

x y

x y

Logic name Textual name Guet
constructs

0 0 0 0 0 False False D028 D090
D104 D114
D123 D250
D253(1)

Nor 1 0 0 0 1 x y

x y 2 0 0 1 0 Inhibition D019 D038
D078

y 3 0 0 1 1 Not Y

x y 4 0 1 0 0 Inhibition C101

x 5 0 1 0 1 Not X
6 0 1 1 0 x y Exclusive Or
7 0 1 1 1 Nand x y

x y And D012 D016
D052
D066(2)
C024
C103(2)
C113(2)
C133(2)
C242

8 1 0 0 0

x y 9 1 0 0 1 Equivalence
x x D032 D101

D113(1)
10 1 0 1 0

11 1 0 1 1 Implication y x
12 1 1 0 0 D066(1)

D143 D180
D253(2)
C103(1)
C113(1)
C144

y y

x y 13 1 1 0 1 Implication
x y 14 1 1 1 0 Or

15 1 1 1 1 True True D118
D113(2)
D117 D133
D135 C195

Table: B.1: Interpretation of Guet networks as Boolean functions

171

d012

e experimental data clearly show aTc having an influence. The

have en tr g to ke th d

gies” th d rent mot yiel nt logi ions.

 nv1 E nv3 E v4

The experimental data of this network are not consistent with the theory of how the

network should behave. Since tetR only regulates itself, the expression of tetR should

have no impact on the expression of GFP. Therefore one would expect GFPenv1 ~=

GFPenv3 and GFPenv2 ~= GFPenv4. Effectively, this network should act as only a function

of IPTG. However, th

authors m

polo

ight be yin ma is point when pointing out that i entical

“to wi iffe pro ers d differe cal funct

E nv2 E n
IPTG/aTc -/- +/- -/+ /+ +
Exp1 96 34 463 25958 1
Exp2 99 98 263 21095 1
Exp3 97 74 429 15445
Mean 98 35 385 20800 1
Opt 97 70 271 27097 2

172

Molecu
 GFP

les (16):
 DR=80.7071

 GFPg IC=1
 GFPgX
 I
 LacI DR=243508

Reactions (2
 D1: LacI --> 0 Kf=243508
 D2: TetR --> 0 Kf=431930
 lambda > 0 37866
 D4: GFP --> 0 Kf=80.7071
 D5: LacIX --> 0 Kf=20711.6
 D6: TetRX --> 0 Kf=546715
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=870724 Kr=54674.6
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=870724 Kr=54674.6
 PL1: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=295651 Kr=691023
 PT: TetRg + 2TetR <-> TetRgX Kf=454467 Kr=137193
 R1: IPTG + LacI <-> LacIX Kf=816165 Kr=692311
 R2: aTc + TetR <-> TetRX Kf=373474 Kr=847260
 T1: LacIg --> LacIg + LacI Kf=990824
 T2: TetRg --> TetRg + TetR Kf=19294.5
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=563886
 T4: GFPg --> GFPg + GFP Kf=792745

PTG (Control Variable)

 LacIX DR=20711.6
 LacIg IC=1
 LacIgX
 TetR DR=431930
 TetRX DR=546715
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=378665
 lambda cIg IC=1
 lambda cIgX

 2):

 D3: cI -- Kf= 5

173

 of

have. See dis

aper

d016

The experimental data this network are not consistent with the theory of how the

cussion in d012. This particular network is acknowledged

as exhibiting a NOR function

nv2 Env3 Env4

network should be

in Figure 5 of Guet’s p

 Env1 E
IPTG/aTc -/- +/- +/+ -/+
Exp1 28391 1190 652698
Exp2 28998 1160 748 484
Exp3 29176 825 863 766
Mean 28855 1058 770 634
Opt 14813 846 14813 846

174

Molecules (16):
 DR=59.5489
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L

 TetRX DR=637180
 TetRg IC=1
 TetRgX
 ntro iable)
 lambda cI DR=446273
 da cIg IC
 lambda cIgX

Reactions (22):
 LacI --> 4549.8
 D2: TetR --> 0 Kf=385194
 D3: lambda cI --> 0 Kf=446273
 D4: GFP --> 0 Kf=59.5489
 D5: LacIX --> 0 Kf=244179
 D6: TetRX --> 0 Kf=637180
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=649138 Kr=120499
 PL1: LacIg + 4LacI <-> LacIgX Kf=3259.68 Kr=946545
 PL2: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=575560 Kr=505127
 PT: TetRg + 2TetR <-> TetRgX Kf=677606 Kr=867500
 R1: IPTG + LacI <-> LacIX Kf=711270 Kr=743979
 R2: aTc + TetR <-> TetRX Kf=117110 Kr=958953
 T1: LacIg --> LacIg + LacI Kf=682183
 T2: TetRg --> TetRg + TetR Kf=535086
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=781232
 T4: GFPg --> GFPg + GFP Kf=882170

 GFP
 GFPg

acI DR=74549.8
acIX DR=244179

 LacIg IC=1
 LacIgX
 TetR DR=385194

 aTc (Co l Var

 lamb =1

 D1: 0 Kf=7

175

repr

I. This subtl repression of

is presen

h would

hi

FP levels sho

Env3 Env4

d018

tetR and LacI act to ess each other although not completely. Some tetR is able to

lamCI results in a subtle repression of GFP.

t there is a slight increase in GFP, which would require a

 require an increase in tetR, which would require a

hibited by IPTG.

bit LacI and aTc to inhibit tetR, lamCI levels should be

uld be their lowest. Does not agree.

also repress lamC

Env2: When IPTG

decrease in lamCI, whic

decrease in LacI. LacI is being in

Env3: With no IPTG to in

their highest and G

 Env1 Env2
IPTG/aTc -/- +/- -/+ +/+
Exp1 5714 4935 7096 6454
Exp2 5989 4800 6656 6875
Exp3 5537 5128 7181 6719
Mean 5747 4954 6978 6682
Opt 6090 6090 6090 6090

176

Molecules (16):
 DR=134.998
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L

 T

 l
 l

Reactions (22):
 D1: LacI - Kf=157
 R -- Kf=3506
 D3: lambda cI --> 0 Kf=976142
 GFP --> 0 34.998
 LacIX --> =13608
 TetRX --> =46706
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=233959 Kr=537530
 PL2: TetRg + 4LacI <-> TetRgX Kf=586015 Kr=64471.8
 PTa: LacIg + 2TetR <-> LacIgX Kf=523640 Kr=0.00011
 PTb: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=523640 Kr=0.00011
 R1: IPTG + LacI <-> LacIX Kf=542136 Kr=383598
 R2: aTc + TetR <-> TetRX Kf=121444 Kr=914971
 T1: LacIg --> LacIg + LacI Kf=769807
 T2: TetRg --> TetRg + TetR Kf=964088
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=12312.9
 T4: GFPg --> GFPg + GFP Kf=822182

 GFP
 GFPg

acI DR=157215
acIX DR=136089

 LacIg IC=1
 LacIgX

etR DR=350608
 TetRX DR=467069
 TetRg IC=1
 TetRgX
 aTc (Control Variable)

ambda cI DR=976142
ambda cIg IC=1

 lambda cIgX

 -> 0 215
 D2: Tet > 0 08

 D4: Kf=1
 D5: 0 Kf 9
 D6: 0 Kf 9

177

d019

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 386 609 10550 125
Exp2 300 561 10796 117
Exp3 308 419 11017 264
Mean 331 530 10788 169
Opt 343 343 10788 343

178

Molecules (16):
 DR=72.0054
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=60450.8
 LacIX DR=784418
 LacIg IC=1
 LacIgX
 DR=4322.0
 X DR=82715
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=179980
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=60450.8
 D2: TetR --> 0 Kf=4322.02
 D3: lambda cI --> 0 Kf=179980
 D4: GFP --> 0 Kf=72.0054
 D5: LacIX --> 0 Kf=784418
 D6: TetRX --> 0 Kf=827155
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=991594 Kr=437304
 PL2: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=698082 Kr=855382
 PTa: LacIg + 2TetR <-> LacIgX Kf=999944 Kr=3.8043
 PTb: TetRg + 2TetR <-> TetRgX Kf=999944 Kr=3.8043
 R1: IPTG + LacI <-> LacIX Kf=503098 Kr=822883
 R2: aTc + TetR <-> TetRX Kf=522304 Kr=987878
 T1: LacIg --> LacIg + LacI Kf=909974
 T2: TetRg --> TetRg + TetR Kf=732717
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=680721
 T4: GFPg --> GFPg + GFP Kf=826437

 GFP
 GFPg

 TetR 2
 TetR 5

179

d016 th

dent of one of

ince La

tal data

s w

d028

Similar to d012 and e theory of this network says that the expression of GFP

 the environmental signals. In this case, d028 should be

cI does not regulate any other transcription factor.

do not provide a very strong case, it does appear that this

c is present there is a ~50% reduction in GFP expression

ithout aTc.

should be indepen

dependent only on aTc s

Although the experimen

idea may be supported. When aT

compared to the environment

Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 741 526 246 271
Exp2 475 786 219 265
Exp3 499 665 387 229
Mean 571 659 284 255
Opt 615 615 270 270

180

Molecules (16):
 DR=1425.76
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L

 lambda cIgX

R (22)
 I -- =92
 TetR --> =11658
 D3: lambda cI --> 0 Kf=375725
 GFP --> 0 1425.7
 LacIX --> f=4698
 TetRX --> f=6161
 PL+: TetRg + 2(lambda cI) <-> TetRgX Kf=6467.86 Kr=966913
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=637688 Kr=698314
 PL1: LacIg + 4LacI <-> LacIgX Kf=1467.59 Kr=367764
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=260214 Kr=596849
 R1: IPTG + LacI <-> LacIX Kf=472325 Kr=552886
 R2: aTc + TetR <-> TetRX Kf=902657 Kr=941680
 T1: LacIg --> LacIg + LacI Kf=977.144
 T2: TetRg --> TetRg + TetR Kf=765403
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=446575
 T4: GFPg --> GFPg + GFP Kf=879981

 GFP
 GFPg

acI DR=927732
acIX DR=469867

 LacIg IC=1
 LacIgX
 TetR DR=116581
 TetRX DR=616171
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=375725
 lambda cIg IC=1

eactions
 Lac

:
> 0 D1:

 D2:
 Kf
0 Kf

7732
1

 D4: Kf= 6
 D5:
 D6:

 0 K
 0 K

67
71

181

ept PL

d032

Identical to d012 exc 2 instead of PL1. These two might be a good first pair.

Env2 Env3 Env4

 Env1
IPTG/aTc -/- +/- -/+ +/+
Exp1 47156 47627 654 1049
Exp2 48978 1008 48928 806
Exp3 48172 1084 50132 753
Mean 48102 1047 48895 738
Opt 48499 892 48499 892

182

Molecules (16):
 DR=20.3931
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L
 LacIg IC=1
 LacIgX
 TetR DR=141
 TetRX DR=547239
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=303790
 a cIg IC
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=9565.06
 D2: TetR --> 0 Kf=141536
 D3: lambda cI --> 0 Kf=303790
 D4: GFP --> 0 Kf=20.3931
 D5: LacIX --> 0 Kf=556231
 D6: TetRX --> 0 Kf=547239
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=879296 Kr=88370.6
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=879296 Kr=88370.6
 PL2: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=866991 Kr=595419
 PT: TetRg + 2TetR <-> TetRgX Kf=779032 Kr=78355.8
 R1: IPTG + LacI <-> LacIX Kf=88788.1 Kr=500960
 R2: aTc + TetR <-> TetRX Kf=504998 Kr=742455
 T1: LacIg --> LacIg + LacI Kf=747025
 T2: TetRg --> TetRg + TetR Kf=715170
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=703448
 T4: GFPg --> GFPg + GFP Kf=989039

 GFP
 GFPg

acI DR=9565.06
acIX DR=556231

 536

 lambd =1

183

19. En

uet as such

d038

Same topology as d0 v3 differs. Roughly the same GFP expression. Mutation?

. Very different parameters.

Env2 Env3 Env4

Not indicated by G

 Env1
IPTG/aTc -/- +/- -/+ +/+
Exp1 614 654 17313903
Exp2 399 541 13421 207
Exp3 269 458 13878 325
Mean 427 551 13734 235
Opt 427 393 13734 393

184

Molecules (16):
 DR=56.0518
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L

 TetR DR=11394.2
 TetRX DR=568344
 TetRg IC=1

 aTc (Control Variable)
 lambda cI DR=164168
 da cIg IC
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=97406.3
 D2: TetR --> 0 Kf=11394.2
 D3: lambda cI --> 0 Kf=164168
 D4: GFP --> 0 Kf=56.0518
 D5: LacIX --> 0 Kf=402256
 D6: TetRX --> 0 Kf=568344
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=693406 Kr=282444
 PL2: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=789120 Kr=566996
 PTa: LacIg + 2TetR <-> LacIgX Kf=265668 Kr=225839
 PTb: TetRg + 2TetR <-> TetRgX Kf=265668 Kr=225839
 R1: IPTG + LacI <-> LacIX Kf=726516 Kr=233644
 R2: aTc + TetR <-> TetRX Kf=536712 Kr=37503.7
 T1: LacIg --> LacIg + LacI Kf=370007
 T2: TetRg --> TetRg + TetR Kf=267284
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=610549
 T4: GFPg --> GFPg + GFP Kf=770114

 GFP
 GFPg

acI DR=97406.3
acIX DR=402256

 LacIg IC=1
 LacIgX

 TetRgX

 lamb =1

185

ays cau

 could be ma

ttemp e

the reas

 c

ptim

Env3 Env4

d052

This network has alw sed a problem for the Optimization Engine. Three of the

tched but the experimental data from Env2 could never be

ted to construct this network by hand and ran into the sam

oning, but at the time there seemed to be something

were suggesting and the theory of the network.

ould be optimized. If IPTG and aTc have same role both

ize. Should be able to take d019 and swap TetR and LacI and have

four environments

matched. Jean Peccoud a

problem. I do not recall

contradictory about that the data

Isomorphic to d019 which

networks should o

a solution.

 Env1 Env2
IPTG/aTc -/- +/- -/+ +/+
Exp1 13119 554 392 577
Exp2 13841 517 492 646
Exp3 13711 331 421 836
Mean 13557 468 435 686
Opt 7012 7012 435 686

186

Molecules (16):
 DR=120.506
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L

 l
 l

Reactions (22):
 D1: LacI --> 0 Kf=238622
 D2: TetR --> 0 Kf=9565.21
 D3: lambda cI --> 0 Kf=224105
 --> Kf=120.5
 LacIX -- =974606
 TetRX -- =615382
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=854293 Kr=576795
 PL1a: LacIg + 4LacI <-> LacIgX Kf=628261 Kr=334889
 PL1b: TetRg + 4LacI <-> TetRgX Kf=628261 Kr=334889
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=716071 Kr=2317.44
 IPTG + La LacIX 267066 =10327.
 R2: aTc + TetR <-> TetRX Kf=600864 Kr=992330
 T1: LacIg --> LacIg + LacI Kf=349374
 T2: TetRg --> TetRg + TetR Kf=890490
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=817812
 T4: GFPg --> GFPg + GFP Kf=845043

 GFP
 GFPg

acI DR=238622
acIX DR=974606

 LacIg IC=1
 LacIgX
 TetR DR=9565.21
 TetRX DR=615382
 TetRg IC=1
 TetRgX
 aTc (Control Variable)

ambda cI DR=224105
ambda cIg IC=1

 lambda cIgX

 D4: GFP 0 06
 D5: > 0 Kf
 D6: > 0 Kf

 R1: cI <-> Kf= Kr 5

187

E

d066

Repressalator like.

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 7673 1490 425 470
Exp2 7574 1628 387 387
Exp3 8314 1746 418 451
Mean 7854 1622 410 436
Opt 4737 4737 419 429

188

Molecules (16):
 DR=171.767
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 LacIX DR=587690
 LacIg IC=1
 LacIgX
 TetR DR=23.3899
 TetRX DR=625877
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=410721
 a cIg IC
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=178964
 D2: TetR --> 0 Kf=23.3899
 D3: lambda cI --> 0 Kf=410721
 D4: GFP --> 0 Kf=171.767
 D5: LacIX --> 0 Kf=587690
 D6: TetRX --> 0 Kf=625877
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=991691 Kr=352617
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=991691 Kr=352617
 PL2: TetRg + 4LacI <-> TetRgX Kf=448874 Kr=244670
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=350211 Kr=8719.81
 R1: IPTG + LacI <-> LacIX Kf=329971 Kr=245577
 R2: aTc + TetR <-> TetRX Kf=270977 Kr=657054
 T1: LacIg --> LacIg + LacI Kf=880152
 T2: TetRg --> TetRg + TetR Kf=693412
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=862305
 T4: GFPg --> GFPg + GFP Kf=813716

 GFP
 GFPg

acI DR=178964

 lambd =1

189

d078

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 155 156 47482 380
Exp2 28 130 47895 430
Exp3 126 152 50391 413
Mean 103 146 48589 408
Opt 125 125 48589 408

190

Molecules (16):
 DR=14.4561
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=17
 LacIX DR=156698
 LacIg IC=1
 LacIgX
 DR=2255.74
 X DR=31377
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=165843
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=170030
 D2: TetR --> 0 Kf=2255.74
 D3: lambda cI --> 0 Kf=165843
 D4: GFP --> 0 Kf=14.4561
 D5: LacIX --> 0 Kf=156698
 D6: TetRX --> 0 Kf=313775
 PL+: TetRg + 2(lambda cI) <-> TetRgX Kf=306208 Kr=999970
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=590022 Kr=38906.5
 PL2: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=154017 Kr=29460.3
 PT: LacIg + 2TetR <-> LacIgX Kf=622448 Kr=37503.2
 R1: IPTG + LacI <-> LacIX Kf=88754.6 Kr=912393
 R2: aTc + TetR <-> TetRX Kf=572750 Kr=93924
 T1: LacIg --> LacIg + LacI Kf=924437
 T2: TetRg --> TetRg + TetR Kf=500922
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=840024
 T4: GFPg --> GFPg + GFP Kf=702424

 GFP
 GFPg

 0030

 TetR
 TetR 5

191

E

d090

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 212 188 205 122
Exp2 183 205 45 198
Exp3 215 95 28 56
Mean 204 163 93 125
Opt 148 144 148 144

192

Molecules (16):
 DR=4255.32
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=16
 LacIX DR=659470
 LacIg IC=1
 LacIgX
 DR=631411
 X DR=29647
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=688076
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=164421
 D2: TetR --> 0 Kf=631411
 D3: lambda cI --> 0 Kf=688076
 D4: GFP --> 0 Kf=4255.32
 D5: LacIX --> 0 Kf=659470
 D6: TetRX --> 0 Kf=296473
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=413694 Kr=361919
 PL1: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=427833 Kr=395052
 PL2: TetRg + 4LacI <-> TetRgX Kf=772882 Kr=778335
 PT: LacIg + 2TetR <-> LacIgX Kf=76309.8 Kr=698737
 R1: IPTG + LacI <-> LacIX Kf=773631 Kr=114916
 R2: aTc + TetR <-> TetRX Kf=511440 Kr=442122
 T1: LacIg --> LacIg + LacI Kf=873969
 T2: TetRg --> TetRg + TetR Kf=183488
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=110284
 T4: GFPg --> GFPg + GFP Kf=630636

 GFP
 GFPg

 4421

 TetR
 TetR 3

193

erful ex

y. Neither

 Ne

n funct

 f

ce of IPTG m

ave not be dependent on environmental signals. IPTG takes LacI out

uired. Without IPTG lambda cI is tied up. Why env1

d101

This is another wond ample of the experimental data showing that there are

of the environmental inputs have any apparent connection to

ither LacI nor tetR are involved in regulating λcI, but there is

ion being expressed in the observed data. Not

n present in the optimized network. Whatever

or the observed data is certainly not represented in the

ust be tying up λcI transcription factor protein somehow.

errors in the theor

the expression of GFP.

certainly a strong Boolea

surprisingly, there is no regulatio

mechanism that is responsible

model. The presen

Expression should h

of the system, so lambda cI is not req

!= env3?

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 38940 547 4577 796
Exp2 38402 711 4635 905
Exp3 39242 518 4752 954
Mean 38861 592 4654 885
Opt 11248 11248 11248 11246

194

Molecules (16):
 DR=41.2634
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L

etR --> 0 Kf=626336
ambda cI --> 0 Kf=802316

 D4: GFP --> 0 Kf=41.2634
 D5: LacIX --> 0 Kf=676431
 D6: TetRX - Kf=189
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=591742 Kr=591733
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=591742 Kr=591733
 PL1: (lambda cIg) + 2(lambda cI) <-> (lambda cIgX) Kf=600641
Kr=0.001191
 PT: TetRg + 2TetR <-> TetRgX Kf=532494 Kr=695404
 R1: IPTG + LacI <-> LacIX Kf=198217 Kr=482402
 R2: aTc + TetR <-> TetRX Kf=800901 Kr=203937
 T1: LacIg --> LacIg + LacI Kf=904276
 T2: TetRg --> TetRg + TetR Kf=497727
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=617.831
 T4: GFPg --> GFPg + GFP Kf=464138

 GFP
 GFPg

acI DR=628543
acIX DR=676431

 LacIg IC=1
 LacIgX
 TetR DR=626336
 TetRX DR=189727
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=802316
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=628543
 D2: T
 D3: l

 -> 0 727

195

her env

y the expressi

 to λ

bited n

uc

t lambda cI has

Env3 Env4

d104

Similar to d101, neit ironmental factor should have any influence on this

on of GFP is considerably lower than in d101. Again,

cI being tied up in regulation, in this case, of itself.

o regulation at all, which is what is expected. Perhaps a

ment would have been nice. This network agrees with

ing and represses GFP. Result GFP is always repressed.

no requirement to bind to LacI.

network. Strangel

there may be something

Optimized network exhi

little higher in the fourth environ

theory. Lambda CI is self ind

Similar to d101 bu

 Env1 Env2
IPTG/aTc -/- +/- -/+ +/+
Exp1 295 190 225 320
Exp2 222 254 264 352
Exp3 130 186 215 359
Mean 216 210 235 344
Opt 251 251 251 251

196

Molecules (16):
 DR=3980.38
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L

Reactions (22):
 D1: LacI --> 0 Kf=663608
 D2: TetR --> 0 Kf=826580
 D3: lambda cI --> 0 Kf=937136
 GFP --> 0 3980.3
 LacIX --> f=7737
 TetRX --> f=1826
 PL+: (lambda cIg) + 2(lambda cI) <-> (lambda cIgX) Kf=983641
Kr=667247
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=931113 Kr=695206
 PL1a: LacIg + 4LacI <-> LacIgX Kf=348546 Kr=197833
 PL1b: TetRg + 4LacI <-> TetRgX Kf=348546 Kr=197833
 R1: IPTG + LacI <-> LacIX Kf=349493 Kr=404070
 R2: aTc + TetR <-> TetRX Kf=331007 Kr=967923
 T1: LacIg --> LacIg + LacI Kf=556080
 T2: TetRg --> TetRg + TetR Kf=722975
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=11605.2
 T4: GFPg --> GFPg + GFP Kf=999648

 GFP
 GFPg

acI DR=663608
acIX DR=773766

 LacIg IC=1
 LacIgX
 TetR DR=826580
 TetRX DR=182648
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=937136
 lambda cIg IC=1
 lambda cIgX

 D4: Kf= 8
 D5: 0 K 66
 D6: 0 K 48

197

, env2}

d113

Would expect {env1 > {env3, env4}

Env2 Env3 Env4

 Env1
IPTG/aTc -/- +/- +/+ -/+
Exp1 34153 1878 1140 37329
Exp2 35760 1768 1060 38170
Exp3 35579 1864 1177 39394
Mean 35164 1837 1126 38298
Opt 36731 1481 1481 36731

198

Molecules (16):
 DR=20.3362
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L
 LacIg IC=1
 LacIgX
 TetR DR=454
 TetRX DR=526902
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=622375
 a cIg IC
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=63613.9
 D2: TetR --> 0 Kf=454711
 D3: lambda cI --> 0 Kf=622375
 D4: GFP --> 0 Kf=20.3362
 D5: LacIX --> 0 Kf=560147
 D6: TetRX --> 0 Kf=526902
 PL+: LacIg + 2(lambda cI) <-> LacIgX Kf=461033 Kr=945892
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=554282 Kr=43361.1
 PL1a: TetRg + 4LacI <-> TetRgX Kf=224615 Kr=912496
 PL1b: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=224615 Kr=912496
 R1: IPTG + LacI <-> LacIX Kf=776916 Kr=289291
 R2: aTc + TetR <-> TetRX Kf=485438 Kr=211240
 T1: LacIg --> LacIg + LacI Kf=795358
 T2: TetRg --> TetRg + TetR Kf=539722
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=849225
 T4: GFPg --> GFPg + GFP Kf=746969

 GFP
 GFPg

acI DR=63613.9
acIX DR=560147

 711

 lambd =1

199

E

d114

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 185 326 493 467
Exp2 171 200 385 369
Exp3 300 302 462 412
Mean 219 276 446 416
Opt 339 339 339 339

200

Molecules (16):
 DR=2022.03
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=37
 LacIX DR=639956
 LacIg IC=1
 LacIgX
 DR=235765
 X DR=55411
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=904719
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=372063
 D2: TetR --> 0 Kf=235765
 D3: lambda cI --> 0 Kf=904719
 D4: GFP --> 0 Kf=2022.03
 D5: LacIX --> 0 Kf=639956
 D6: TetRX --> 0 Kf=554113
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=0.011607 Kr=630858
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=0.011607 Kr=630858
 PL2a: TetRg + 4LacI <-> TetRgX Kf=520435 Kr=165635
 PL2b: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=520435 Kr=165635
 R1: IPTG + LacI <-> LacIX Kf=931394 Kr=596329
 R2: aTc + TetR <-> TetRX Kf=616791 Kr=566215
 T1: LacIg --> LacIg + LacI Kf=132772
 T2: TetRg --> TetRg + TetR Kf=893129
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=11881.7
 T4: GFPg --> GFPg + GFP Kf=686187

 GFP
 GFPg

 2063

 TetR
 TetR 3

201

d117

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 43974 47048 52142 53199
Exp2 45900 44002 50953 52515
Exp3 46322 47710 51506 51342
Mean 45399 46254 51534 52352
Opt 48884 48884 48884 48884

202

Molecules (16):
 DR=20.2238
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=605
 R=89
 LacIg IC=1
 LacIgX
 DR=599154
 X DR=26519
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=617496
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=605608
 D2: TetR --> 0 Kf=599154
 D3: lambda cI --> 0 Kf=617496
 D4: GFP --> 0 Kf=20.2238
 D5: LacIX --> 0 Kf=898995
 D6: TetRX --> 0 Kf=265194
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=151820 Kr=542077
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=151820 Kr=542077
 PL1a: TetRg + 4LacI <-> TetRgX Kf=478051 Kr=912048
 PL1b: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=478051 Kr=912048
 R1: IPTG + LacI <-> LacIX Kf=0.467327 Kr=833851
 R2: aTc + TetR <-> TetRX Kf=353974 Kr=861973
 T1: LacIg --> LacIg + LacI Kf=188121
 T2: TetRg --> TetRg + TetR Kf=474191
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=0.403215
 T4: GFPg --> GFPg + GFP Kf=988632

 GFP
 GFPg

 608
89 LacIX D 95

 TetR
 TetR 4

203

En

d123

Repressalator like

 Env1 v2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 570 723 397 388
Exp2 629 900 387 305
Exp3 762 977 423 157
Mean 653 867 402 283
Opt 654 867 343 343

204

Molecules (16):
 DR=958.766
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 LacIX DR=244878
 LacIg IC=1
 LacIgX
 etR DR=20
 TetRX DR=700063
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=555925
 a cIg IC
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=251783
 D2: TetR --> 0 Kf=202925
 D3: lambda cI --> 0 Kf=555925
 D4: GFP --> 0 Kf=958.766
 D5: LacIX --> 0 Kf=244878
 D6: TetRX --> 0 Kf=700063
 PL+: LacIg + 2(lambda cI) <-> LacIgX Kf=883720 Kr=199628
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=558657 Kr=719031
 PL2: TetRg + 4LacI <-> TetRgX Kf=691591 Kr=692971
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=492835 Kr=701118
 R1: IPTG + LacI <-> LacIX Kf=956356 Kr=220841
 R2: aTc + TetR <-> TetRX Kf=898519 Kr=412222
 T1: LacIg --> LacIg + LacI Kf=839707
 T2: TetRg --> TetRg + TetR Kf=562499
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=805156
 T4: GFPg --> GFPg + GFP Kf=863885

 GFP
 GFPg

acI DR=251783

 T 2925

 lambd =1

205

d133

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 44918 44056 45511 52095
Exp2 42908 44440 47256 52900
Exp3 42598 44889 50619 54159
Mean 43475 44462 47795 53051
Opt 47196 47196 47196 47196

206

Molecules (16):
 DR=1.1651
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=809
 LacIX DR=0.511133
 LacIg IC=1
 LacIgX
 DR=485995
 X DR=60208
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=279468
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=8094.8
 D2: TetR --> 0 Kf=485995
 D3: lambda cI --> 0 Kf=279468
 D4: GFP --> 0 Kf=1.1651
 D5: LacIX --> 0 Kf=0.511133
 D6: TetRX --> 0 Kf=602087
 PL+: LacIg + 2(lambda cI) <-> LacIgX Kf=126465 Kr=721532
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=15486.4 Kr=798191
 PL2: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=680064 Kr=333962
 PT: TetRg + 2TetR <-> TetRgX Kf=882468 Kr=739535
 R1: IPTG + LacI <-> LacIX Kf=0.323142 Kr=747716
 R2: aTc + TetR <-> TetRX Kf=126973 Kr=201933
 T1: LacIg --> LacIg + LacI Kf=948202
 T2: TetRg --> TetRg + TetR Kf=824955
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=925667
 T4: GFPg --> GFPg + GFP Kf=54987.9

 GFP
 GFPg

 4.8

 TetR
 TetR 7

207

d135

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 6115 5763 5795 5894
Exp2 6217 5621 5579 5974
Exp3 5933 5579 6087 5428
Mean 6088 5655 5820 5766
Opt 5832 5832 5832 5832

208

Molecules (16):
 DR=160.072
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=437
 LacIX DR=778747
 LacIg IC=1
 LacIgX
 DR=586675
 X DR=72643
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=977181
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=437457
 D2: TetR --> 0 Kf=586675
 D3: lambda cI --> 0 Kf=977181
 D4: GFP --> 0 Kf=160.072
 D5: LacIX --> 0 Kf=778747
 D6: TetRX --> 0 Kf=726431
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=3613.25 Kr=812462
 PL-b: (lambda cIg) + 2(lambda cI) <-> (lambda cIgX) Kf=3613.25
Kr=812462
 PL2a: LacIg + 4LacI <-> LacIgX Kf=822439 Kr=313557
 PL2b: TetRg + 4LacI <-> TetRgX Kf=822439 Kr=313557
 R1: IPTG + LacI <-> LacIX Kf=495632 Kr=687284
 R2: aTc + TetR <-> TetRX Kf=626813 Kr=379905
 T1: LacIg --> LacIg + LacI Kf=619234
 T2: TetRg --> TetRg + TetR Kf=795419
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=6944.09
 T4: GFPg --> GFPg + GFP Kf=933564

 GFP
 GFPg

 457

 TetR
 TetR 1

209

d143

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 14403 14629 621 464
Exp2 13999 13728 556 449
Exp3 14256 14016 528 441
Mean 14219 14124 568 451
Opt 14172 14172 510 510

210

Molecules (16):
 DR=63.7527
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=577
 R=72
 LacIg IC=1
 LacIgX
 DR=174.20
 X DR=82279
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=230394
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=577670
 D2: TetR --> 0 Kf=174.206
 D3: lambda cI --> 0 Kf=230394
 D4: GFP --> 0 Kf=63.7527
 D5: LacIX --> 0 Kf=721273
 D6: TetRX --> 0 Kf=822797
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=774386 Kr=209093
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=774386 Kr=209093
 PTa: TetRg + 2TetR <-> TetRgX Kf=996155 Kr=60315.3
 PTb: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=996155 Kr=60315.3
 R1: IPTG + LacI <-> LacIX Kf=963074 Kr=203528
 R2: aTc + TetR <-> TetRX Kf=381229 Kr=649722
 T1: LacIg --> LacIg + LacI Kf=458237
 T2: TetRg --> TetRg + TetR Kf=555520
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=626527
 T4: GFPg --> GFPg + GFP Kf=903553

 GFP
 GFPg

 670
12 LacIX D 73

 TetR 6
 TetR 7

211

d180

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 46591 48572 753 824
Exp2 46652 47987 831 855
Exp3 49246 50113 790 978
Mean 47496 48891 791 886
Opt 48091 48830 1022 1043

212

Molecules (16):
 DR=9.70114
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=827
 R=88
 LacIg IC=1
 LacIgX
 DR=824161
 X DR=35162
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=388291
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=82765
 D2: TetR --> 0 Kf=824161
 D3: lambda cI --> 0 Kf=388291
 D4: GFP --> 0 Kf=9.70114
 D5: LacIX --> 0 Kf=884439
 D6: TetRX --> 0 Kf=351625
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=665825 Kr=46133.1
 PL2: TetRg + 4LacI <-> TetRgX Kf=132111 Kr=797110
 PTa: LacIg + 2TetR <-> LacIgX Kf=893773 Kr=120550
 PTb: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=893773 Kr=120550
 R1: IPTG + LacI <-> LacIX Kf=754150 Kr=116260
 R2: aTc + TetR <-> TetRX Kf=604750 Kr=548887
 T1: LacIg --> LacIg + LacI Kf=409254
 T2: TetRg --> TetRg + TetR Kf=922826
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=943623
 T4: GFPg --> GFPg + GFP Kf=854629

 GFP
 GFPg

 65
44 LacIX D 39

 TetR
 TetR 5

213

E

d250

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 774 329 400 145
Exp2 821 269 449 171
Exp3 791 294 214 233
Mean 796 297 354 183
Opt 575 240 575 240

214

Molecules (16):
 DR=1512.57
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=12547.5
 LacIX DR=43377.7
 LacIg IC=1
 LacIgX
 DR=420233
 X DR=46537
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=448462
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=12547.5
 D2: TetR --> 0 Kf=420233
 D3: lambda cI --> 0 Kf=448462
 D4: GFP --> 0 Kf=1512.57
 D5: LacIX --> 0 Kf=43377.7
 D6: TetRX --> 0 Kf=465376
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=380168 Kr=992123
 PL1a: LacIg + 4LacI <-> LacIgX Kf=26208.8 Kr=655176
 PL1b: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=26208.8 Kr=655176
 PT: TetRg + 2TetR <-> TetRgX Kf=628449 Kr=723560
 R1: IPTG + LacI <-> LacIX Kf=529351 Kr=581313
 R2: aTc + TetR <-> TetRX Kf=851647 Kr=369405
 T1: LacIg --> LacIg + LacI Kf=972058
 T2: TetRg --> TetRg + TetR Kf=49799.3
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=859654
 T4: GFPg --> GFPg + GFP Kf=873912

 GFP
 GFPg

 TetR
 TetR 6

215

E

d253

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 912 792 436 324
Exp2 1014 723 262 157
Exp3 730 883 279 131
Mean 885 799 326 204
Opt 554 554 554 554

216

Molecules (16):
 DR=1226.27
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=35
 LacIX DR=471867
 LacIg IC=1
 LacIgX
 DR=89199
 X DR=7344
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=971965
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=357066
 D2: TetR --> 0 Kf=891995
 D3: lambda cI --> 0 Kf=971965
 D4: GFP --> 0 Kf=1226.27
 D5: LacIX --> 0 Kf=471867
 D6: TetRX --> 0 Kf=734408
 PL+: (lambda cIg) + 2(lambda cI) <-> (lambda cIgX) Kf=503524
Kr=819094
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=6727.2 Kr=285612
 PL1: LacIg + 4LacI <-> LacIgX Kf=210194 Kr=160178
 PT: TetRg + 2TetR <-> TetRgX Kf=452829 Kr=314019
 R1: IPTG + LacI <-> LacIX Kf=305309 Kr=862778
 R2: aTc + TetR <-> TetRX Kf=39390.1 Kr=238919
 T1: LacIg --> LacIg + LacI Kf=592507
 T2: TetRg --> TetRg + TetR Kf=114365
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=15662.1
 T4: GFPg --> GFPg + GFP Kf=678922

 GFP
 GFPg

 7066

 TetR 5
0 TetR 8

217

c024

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 14090 471 575 517
Exp2 14355 422 502 311
Exp3 13322 424 540 211
Mean 13922 439 539 346
Opt 7230 392 7230 392

218

Molecules (16):
 DR=122.416
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=313
 LacIX DR=383603
 LacIg IC=1
 LacIgX
 DR=25257
 X DR=9612
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=138530
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=313487
 D2: TetR --> 0 Kf=252578
 D3: lambda cI --> 0 Kf=138530
 D4: GFP --> 0 Kf=122.416
 D5: LacIX --> 0 Kf=383603
 D6: TetRX --> 0 Kf=961257
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=774422 Kr=271148
 PL1: LacIg + 4LacI <-> LacIgX Kf=885325 Kr=966934
 PL2: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=868220 Kr=0.007801
 PT: TetRg + 2TetR <-> TetRgX Kf=228857 Kr=172739
 R1: IPTG + LacI <-> LacIX Kf=652946 Kr=123384
 R2: aTc + TetR <-> TetRX Kf=621296 Kr=344235
 T1: LacIg --> LacIg + LacI Kf=569136
 T2: TetRg --> TetRg + TetR Kf=522528
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=832479
 T4: GFPg --> GFPg + GFP Kf=885036

 GFP
 GFPg

 487

 TetR 8
 TetR 57

219

E

c101

Repressalator like

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 185 8792 238 241
Exp2 176 9264 314 174
Exp3 170 9309 339 266
Mean 177 9121 297 227
Opt 234 9121 234 234

220

Molecules (16):
 DR=101.364
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=17551.4
 LacIX DR=71389.3
 LacIg IC=1
 LacIgX
 TetR DR=17542.3
 TetRX DR=864751
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=174406
 a cIg IC
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=17551.4
 D2: TetR --> 0 Kf=17542.3
 D3: lambda cI --> 0 Kf=174406
 D4: GFP --> 0 Kf=101.364
 D5: LacIX --> 0 Kf=71389.3
 D6: TetRX --> 0 Kf=864751
 PL+: LacIg + 2(lambda cI) <-> LacIgX Kf=28199.7 Kr=507462
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=687110 Kr=332990
 PL2: TetRg + 4LacI <-> TetRgX Kf=464604 Kr=291449
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=607930 Kr=464387
 R1: IPTG + LacI <-> LacIX Kf=968381 Kr=33058.1
 R2: aTc + TetR <-> TetRX Kf=530238 Kr=670970
 T1: LacIg --> LacIg + LacI Kf=620472
 T2: TetRg --> TetRg + TetR Kf=136641
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=751270
 T4: GFPg --> GFPg + GFP Kf=930047

 GFP
 GFPg

 lambd =1

221

E

c103

Repressalator like

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 11489 2538 883 679
Exp2 11207 2360 811 714
Exp3 11220 2425 760 569
Mean 11305 2441 818 654
Opt 6873 6873 736 736

222

Molecules (16):
 DR=130.302
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 LacIX DR=458104
 LacIg IC=1
 LacIgX
 TetR DR=12437.6
 TetRX DR=820482
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=433949
 a cIg I
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=478905
 D2: TetR --> 0 Kf=12437.6
 D3: lambda cI --> 0 Kf=433949
 D4: GFP --> 0 Kf=130.302
 D5: LacIX --> 0 Kf=458104
 D6: TetRX --> 0 Kf=820482
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=915203 Kr=262809
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=915203 Kr=262809
 PL1: TetRg + 4LacI <-> TetRgX Kf=75972.3 Kr=946042
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=955199 Kr=52756.8
 R1: IPTG + LacI <-> LacIX Kf=287193 Kr=595386
 R2: aTc + TetR <-> TetRX Kf=955178 Kr=372583
 T1: LacIg --> LacIg + LacI Kf=12102.8
 T2: TetRg --> TetRg + TetR Kf=963035
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=674109
 T4: GFPg --> GFPg + GFP Kf=895548

 GFP
 GFPg

acI DR=478905

 lambd C=1

223

xample

E

c113

Repressalator like. E of contradictory network.

nv2 Env3 Env4

 Env1
IPTG/aTc -/- +/- -/+ +/+
Exp1 13326 1784 395 529
Exp2 13442 1751 446 504
Exp3 13594 1860 501 560
Mean 13454 1798 447 531
Opt 7626 7626 489 489

224

Molecules (16):
 DR=119.564
 IC=1

 GFPgX
 IPTG (Control Variable)
 L
 L
 LacIg IC=1
 LacIgX
 TetR DR=933.293
 TetRX DR=33773.6
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=265282
 a cIg I
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=585969
 D2: TetR --> 0 Kf=933.293
 D3: lambda cI --> 0 Kf=265282
 D4: GFP --> 0 Kf=119.564
 D5: LacIX --> 0 Kf=274465
 D6: TetRX --> 0 Kf=33773.6
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=818723 Kr=297459
 PL-b: LacIg + 2(lambda cI) <-> LacIgX Kf=818723 Kr=297459
 PL1: TetRg + 4LacI <-> TetRgX Kf=823991 Kr=410017
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=459434 Kr=37165.3
 R1: IPTG + LacI <-> LacIX Kf=155224 Kr=580634
 R2: aTc + TetR <-> TetRX Kf=800675 Kr=345053
 T1: LacIg --> LacIg + LacI Kf=645601
 T2: TetRg --> TetRg + TetR Kf=957150
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=746506
 T4: GFPg --> GFPg + GFP Kf=911824

 GFP
 GFPg

acI DR=585969
acIX DR=274465

 lambd C=1

225

c144

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 33708 4795 518 679
Exp2 30473 4786 586 605
Exp3 30690 4993 499 684
Mean 31623 4858 534 656
Opt 18241 18241 534 656

226

Molecules (16):
 DR=49.8234
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=700
 R=50
 LacIg IC=1
 LacIgX
 DR=21150.
 X DR=82290
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=334013
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=700408
 D2: TetR --> 0 Kf=21150.1
 D3: lambda cI --> 0 Kf=334013
 D4: GFP --> 0 Kf=49.8234
 D5: LacIX --> 0 Kf=502657
 D6: TetRX --> 0 Kf=822905
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=312709 Kr=25039.6
 PL2a: LacIg + 4LacI <-> LacIgX Kf=793075 Kr=866721
 PL2b: TetRg + 4LacI <-> TetRgX Kf=793075 Kr=866721
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=878762 Kr=643.341
 R1: IPTG + LacI <-> LacIX Kf=450815 Kr=909866
 R2: aTc + TetR <-> TetRX Kf=537540 Kr=925684
 T1: LacIg --> LacIg + LacI Kf=529362
 T2: TetRg --> TetRg + TetR Kf=543542
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=797378
 T4: GFPg --> GFPg + GFP Kf=908813

 GFP
 GFPg

 408
26 LacIX D 57

 TetR 1
 TetR 5

227

c195

 Env1 Env2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 46152 17778 66269 57863
Exp2 45979 18337 69483 56723
Exp3 46683 18581 70244 55822
Mean 46271 18232 68665 56803
Opt 45019 37746 57352 37746

228

Molecules (16):
 DR=10.9113
 IC=1

 GFPgX
 IPTG (Control Variable)
 LacI DR=160
 R=26
 LacIg IC=1
 LacIgX
 DR=435654
 X DR=85761
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=841397
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=160761
 D2: TetR --> 0 Kf=435654
 D3: lambda cI --> 0 Kf=841397
 D4: GFP --> 0 Kf=10.9113
 D5: LacIX --> 0 Kf=264858
 D6: TetRX --> 0 Kf=857612
 PL+: LacIg + 2(lambda cI) <-> LacIgX Kf=283743 Kr=95286.9
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=373531 Kr=381048
 PL1a: TetRg + 4LacI <-> TetRgX Kf=322569 Kr=463059
 PL1b: (lambda cIg) + 4LacI <-> (lambda cIgX) Kf=322569 Kr=463059
 R1: IPTG + LacI <-> LacIX Kf=143810 Kr=48128.9
 R2: aTc + TetR <-> TetRX Kf=438482 Kr=599483
 T1: LacIg --> LacIg + LacI Kf=261675
 T2: TetRg --> TetRg + TetR Kf=832260
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=635933
 T4: GFPg --> GFPg + GFP Kf=642495

 GFP
 GFPg

 761
48 LacIX D 58

 TetR
 TetR 2

229

E

c242

 Env1 nv2 Env3 Env4
IPTG/aTc -/- +/- -/+ +/+
Exp1 17494 737 585 436
Exp2 17498 749 598 442
Exp3 17220 662 519 449
Mean 17404 716 568 442
Opt 9060 9060 505 505

230

Molecules (16):
 DR=87.1502
 IC=1

 GFPgX
 IPTG (Control Variable)
 acI DR=95
 LacIX DR=504769
 LacIg IC=1
 LacIgX
 DR=1204
 X DR=402
 TetRg IC=1
 TetRgX
 aTc (Control Variable)
 lambda cI DR=319297
 lambda cIg IC=1
 lambda cIgX

Reactions (22):
 D1: LacI --> 0 Kf=955302
 D2: TetR --> 0 Kf=12040.9
 D3: lambda cI --> 0 Kf=319297
 D4: GFP --> 0 Kf=87.1502
 D5: LacIX --> 0 Kf=504769
 D6: TetRX --> 0 Kf=402519
 PL-a: GFPg + 2(lambda cI) <-> GFPgX Kf=661761 Kr=336800
 PL1a: LacIg + 4LacI <-> LacIgX Kf=566771 Kr=612637
 PL1b: TetRg + 4LacI <-> TetRgX Kf=566771 Kr=612637
 PT: (lambda cIg) + 2TetR <-> (lambda cIgX) Kf=714408 Kr=824584
 R1: IPTG + LacI <-> LacIX Kf=849315 Kr=262558
 R2: aTc + TetR <-> TetRX Kf=340725 Kr=342762
 T1: LacIg --> LacIg + LacI Kf=14984.6
 T2: TetRg --> TetRg + TetR Kf=772419
 T3: (lambda cIg) --> (lambda cIg) + (lambda cI) Kf=938979
 T4: GFPg --> GFPg + GFP Kf=789570

 GFP
 GFPg

 L 5302

 TetR 0.9
 TetR 519

	2009
	Modeling, simulation, synthesis, and optimization of biochemical networks
	Kent Allan Vander Velden
	Recommended Citation

	Table of contents
	Chapter 1. General introduction
	Introduction
	Background and significance
	Dissertation organization and accomplishments
	Literature cited

	Chapter 2. Modeling networks of molecular interactions in the living cell
	Abstract
	Introduction
	Structure
	Chemical equations
	Diagrammatic representation

	Dynamics
	Differential equations
	Stochastic process
	Approximations
	Software

	Applications
	Knowledge capture
	Discovery
	Engineering

	Conclusion
	Acknowledgments
	Literature cited

	Chapter 3. Biochemical network modeling environment
	Abstract
	Introduction
	Model definition
	Basic editing
	Environment specification
	Hierarchical modeling
	Reporting
	Simulation
	ODE and stochastic simulation
	Visualization
	Distributed simulation
	Model evaluation
	Fitness function
	Optimization of model parameters
	Examples
	Conclusions
	Acknowledgements
	Literature cited

	Chapter 4. Parameterization of a nonlinear genotype to phenotype map
	Abstract
	Introduction
	Methods
	Model
	Numerical identification of the steady states
	Fitting to asymptotic phenotypes
	Fitting to a time series of phenotypes
	Application

	Results
	Numerical identification of steady states
	Fitting to asymptotic phenotypes
	Fitting to time series of phenotypes

	Discussion
	Results
	Necessary improvements of the algorithm
	Research directions

	Acknowledgements
	Literature cited

	Chapter 5. Values of alleles in a molecular network model are context dependent
	Abstract
	Introduction
	Materials and methods
	Results
	Discussion
	Acknowledgements
	Literature cited
	Appendix
	Abstract
	Introduction
	Methods
	Optimization of parameters
	Optimization of model topology
	Common operations

	Results
	Example 1
	Example 2
	Example 3
	Example 4

	Discussion
	Future directions

	Conclusion
	Literature cited
	Appendix
	Comparison of network topologies
	Comparison of graph distance measures based on the Eigenvalues of the Laplacian Matrices
	Measure comparison
	Comparison of un-normalized distance measures
	Comparison of normalized distance measures
	Conclusion of distance measure comparison
	Subtleties of the d2 distance measure

	Identification of Alternative Switch Topologies
	GenoFIT parameter file

	Chapter 7. Modeling the Guet library of networks
	Abstract
	2. The Experiment of Guet et al.
	Overview
	Transcription factors
	Promoters
	Reporting
	Plasmid construction
	E. coli Strains
	Environments
	Measurements
	Topologies
	Limitations

	3. Modeling the Guet networks with knowledge
	Overview
	Limitations
	Example
	Optimization of individual Guet networks

	Conclusions
	Literature cited
	Appendix

	Chapter 8. General conclusions
	Overview
	Accomplishments
	Future directions
	Final thoughts

	Appendix A. PPN: A Petri Net simulation tool
	Preface
	Introduction
	Methods
	Modeling environment
	Hybrid simulation algorithm
	Generation of results
	Presentation of results

	Discussion
	Example: Communication protocol
	Example: Stochastic vs. deterministic
	Example: Identification of deadlock and race conditions
	Example: Reliability impact of serial modules
	Example: Reliability impact of parallel modules
	Example: Reliability impact of modules with failover
	Future improvements

	Conclusions
	Literature cited

	Appendix B. Additional examples
	d012
	d016
	d018
	d019
	d028
	d032
	d038
	d052
	d066
	d078
	d090
	d101
	d104
	d113
	d114
	d117
	d123
	d133
	d135
	d143
	d180
	d250
	d253
	c024
	c101
	c103
	c113
	c144
	c195
	c242

